
Cross-Language News Article Clustering

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:37736777

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:37736777
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Cross-Language%20News%20Article%20Clustering&community=1/14557738&collection=1/14557739&owningCollection1/14557739&harvardAuthors=844624814b360b60c293afa5fff016a4&department
https://dash.harvard.edu/pages/accessibility

Cross-Language News Article Clustering

Nathan S. Guerin

A Thesis in the Field of Software Engineering

for the Degree of Master of Liberal Arts in Extension Studies

Harvard University

November, 2017

© 2017 Nathan S. Guerin

Abstract

This thesis describes a method of delivering topically-clustered English and

Chinese news articles for monolingual readers and provides a fully-implemented

application. In today’s highly-polarized political climate, we are inundated with a

diversity of opinions in television and online news media markets. Yet there are some

topics, particularly those pertaining to foreign policy, in which a nation’s news media

exhibits bias by nature of who’s reporting the news and to whom it’s being reported. One

potential way for the media’s audience to counteract bias is by comparing and contrasting

news articles about the same topic written in different languages and different countries.

Such comparisons can expose unique perspectives by nature of their origin.

The application developed for this thesis allows one to quickly identify articles

about the same topic in different languages. It does this by clustering news articles by

topic and presenting them in groups. For monolingual readers, the application integrates

with Google Translate to provide a translated version of the source text. In order to

provide these services, the application scrapes Chinese and English news articles from the

web, extracts their relevant features, translates these features into a common human

language, uses machine-learning techniques to reduce the dimensionality of the features,

and stores those features for on-demand clustering and similar article retrieval.

This thesis and similar projects have many possible applications, from providing

the casual bilingual reader the chance to explore news coverage from different viewpoints,

to use by researchers in both the US and China in better understanding the media and how

it shapes public opinion. Both the application and its relevant source code are accessible

on the author’s website.

Author’s Biographical Sketch

Nathan Guerin is a software engineer currently living and working in Raleigh,

North Carolina. His professional experiences include designing and developing software

systems in the healthcare and travel industries. He greatly enjoys teaching and has been a

Teaching Assistant for multiple courses taught through Harvard’s Division of Continuing

Education.

Nathan has lived and worked on four different continents and is very passionate

about language and culture. Of the foreign languages he speaks, he finds Chinese the most

interesting and is an avid hobbyist Chinese-to-English translator, some of the products of

which can be seen on his website.1 His passion for exploring how software can be used to

lower linguistic and cultural barriers was the driving impetus for his choosing the topic of

the thesis you’re currently reading.

1http://www.plaintexttransmissions.org/

iv

Dedication

To Emily, for her steadfast support of my educational pursuits over the past

few years and for not leaving even though we gave up far too many

evening and weekends together,

to Rich and Connie, for teaching that anything’s possible and encouraging me

to travel to far-off places,

to Missy, for being a great sister and bringing Matt and Mylo into our lives,

and to Josie, Mark, Schuyler and Lucas, for helping Emily and me

immeasurably over the past year in Cambridge.

v

Acknowledgments

I am deeply indebted to my thesis adviser, Dr. James Frankel. The bi-weekly

meetings we held over the past year kept me and this thesis on track. His advice and

questions were invaluable and often pointed me towards new, fruitful paths of inquiry and

development. The first of the three courses I took of his, Operating Systems, was the

course that inspired me to formally enroll in HES and complete the Software Engineering

masters degree. I’ll never forget the great feeling he left us with in his classes upon first

really understanding how different parts of computing systems work.

Dr. Jeff Parker helped me immeasurably during the early stages of this thesis. The

phase of brainstorming thesis topics led to a few different ideas I was interested in

exploring. Dr. Parker gave me a lot of great suggestions, connected me with different

professors and students who were experts in the fields I was exploring, and nudged me

away from some of my weaker ideas. The Bioinformatics Algorithms course Dr. Parker

taught was a great first introduction to applications in research computing, an area I’ve

since become very interested in. I am also thankful for the multiple enrollment throughout

my time at HES that Dr. Parker helped me administratively, academically, and

professionally.

My friend Dr. Giorgio Strafella of St. Gallen University was also very helpful

during the thesis writing process. Dr. Strafella is an expert in modern Chinese literature

and society. After deciding that I would like to work on a topic involving modern Chinese

society, Dr. Strafella and I exchanged many messages brainstorming concrete topic ideas.

After I settled on a topic, Dr. Strafella was always available whenever I had questions

pertaining to contemporary Chinese society.

vi

Contents

List of Tables x

List of Figures xi

1 Why Is This Application Necessary? 1

2 Prior Work 4

3 The Web Application 12

3.1 Software Development Requirements . 12

3.1.1 The Target Audience . 12

3.1.2 Visual/Design Requirements . 13

3.1.3 Functional Requirements . 14

3.2 Users Guide . 15

4 Implementing Cross-Language News Article Clustering 22

4.1 Architectural Overview . 22

4.1.1 The Article Service . 23

4.1.2 The Web Application . 24

4.1.3 The Database . 25

4.2 Technology Options and Choices . 26

4.2.1 For the Article Service . 26

vii

CPython 3.6 . 26

Stanford CoreNLP . 27

Scrapy . 28

Psycopg2 . 29

Google APIs Python Client . 29

4.2.2 For the Web Application . 30

Numpy . 30

SciPy and scikit-learn . 30

Natural Language Toolkit . 31

Matplotlib . 32

Django Web Application Framework 32

Gunicorn . 33

Nginx . 33

4.2.3 For the Database . 34

PostgreSQL database . 34

4.2.4 Profilers . 34

cProfile . 35

Django Debug Toolbar . 36

4.3 Implementation of Core Components . 38

4.3.1 The Data Model . 38

news_source . 38

article . 39

headline . 40

4.3.2 Python Access to the Database . 40

4.3.3 Scraping the Web for Articles . 41

4.3.4 Django as a Foundation . 44

4.4 Interesting Algorithms . 47

viii

4.4.1 Hierarchical Clustering . 47

An implementation of the HAC Algorithm 49

Determining the number of clusters: the inconsistency method . . . 55

Determining the number of clusters: the elbow method 57

4.4.2 DBSCAN . 58

Distance Metrics . 58

Term Frequency/Inverse Document Frequency 61

An implementation of the DBSCAN algorithm 64

4.4.3 The Python STL’s LRU Cache Algorithm 70

An implementation of an LRU cache 73

5 Results and Observations 80

6 Summary and Conclusions 86

References 88

Glossary 93

ix

List of Tables

4.1 The database’s news_source table . 38

4.2 The database’s article table . 39

4.3 The database’s headline table . 40

4.4 X and Y coordinates generating three small clusters 50

4.5 Intra-cluster inconsistency of three small clusters 56

4.6 Corpus documents used to demonstrate TF-IDF 61

4.7 Term frequency vectors used in TF-IDF calculations 62

x

List of Figures

3.1 User’s Guide: the homepage . 16

3.2 User’s Guide: expanding a story card . 17

3.3 User’s Guide: selecting a date . 18

3.4 User’s Guide: modifying the date range 19

3.5 User’s Guide: changing advanced settings 21

4.1 A high-level overview of the system architecture 23

4.2 The article service’s architecture . 24

4.3 The web application’s architecture . 25

4.4 Overview of the Scrapy framework architecture 41

4.5 The article service’s integration with the Scrapy framework 42

4.6 Order of operations in the Scrapy framework 42

4.7 Some important files in the web application project 44

4.8 Outline of the hierarchical agglomerative clustering algorithm 49

4.9 Three small clusters scattered in the XY coordinate system 51

4.10 Dendrogram produced by hierarchical agglomerative clustering 55

4.11 Acceleration used by the elbow method to determine number of clusters . . 57

4.12 An outline of the steps in the DBSCAN algorithm 64

4.13 Explanation of the find_neighbors function 69

4.14 DBSCAN: varying the eps parameter . 71

4.15 DBSCAN: varying the min_samples parameter 72

xi

4.16 LRU cache: Initializing a doubly-linked list 75

4.17 LRU cache: accessing the first element 76

4.18 LRU cache: accessing new elements . 76

4.19 LRU cache: accessing a currently present element 77

4.20 LRU cache: replacing an item in the cache (1/2) 77

4.21 LRU cache: replacing an item in the cache (2/2) 78

5.1 Example hierarchical clustering results from May 11-15, 2017 82

5.2 Performance of retrieving and deserializing the corenlp_json column . . . 84

xii

Chapter 1

Why Is This Application Necessary?

While it’s impossible to predict the future, the general consensus of the political

and foreign policy establishment is that the US-Chinese bilateral relationship is going to

be the most important international relationship in the 21st century. In the words of

China’s current premier Xi Jinping, when “China and the US have a good relationship it’s

beneficial not only to the people of these two nations, but also to the world. Cooperation

is the only choice for China and the US” (Foreign Ministry of the People’s Republic of

China [FMPRC], 2017). American president Donald Trump has echoed this idea: “The

responsibilities of the US and China are great, both sides should continue to communicate

and cooperate on important issues, and by doing so will be able to accomplish great things

together” (FMPRC, 2017). Yet there will be many challenges, the chief among them

mutual mistrust, that have the potential to make managing this relationship difficult.

Competitive antagonism impedes the ability of the US and China to cooperate.

Simply put, China is becoming a superpower, rising into the category of global political

power that the US has been the sole occupant of since the disintegration of the Soviet

Union. The director of Harvard University’s Belfer Center for Science and International

Affairs, Graham Allison has identified 16 cases over the past 500 years where two

country’s relative power dynamic has closely resembled that of the US and China, and in

1

12 of those 16 cases the outcome has been war (Pazzanese, 2017). Issues such as trade

grievances, claims of containment, tangled and complex alliances, and fundamentally

divergent visions for the coming century all encourage antagonism. Fingar and Fan (2013)

warn that “complacency and failure to address misperceptions and mistrust […] will have

unfortunate consequences for both sides” (p. 125). Both the US and China are highly

nationalistic countries which can make it difficult to compromise on certain issues. It’s

difficult to imagine the US and China compromising on Taiwan or human rights, for

example. While it is inaccurate and often a vast over-generalization to ascribe qualities to

all the people of a country, the different educational, ideological, religious, and linguistic

systems can make people-to-people mutual understanding a challenge. Technology that

assists people from both countries to better understand the other’s perspective is one

positive step towards dispelling misperceptions and building trust. The main goal of this

thesis is to provide a tool that people of both countries can use to better understand each

other.

Yet, we easily fall prey to selective exposure—the process of filtering out

messages that do no match our beliefs because of political preference, or simply by

selecting a certain information medium. It’s a challenge to transcend the perspectives we

are most familiar with, even more so when they are cloaked behind a language barrier.

Some of the underlying reasons for this are covered in Munson, Lee, and Resnick (2013),

wherein they create a browser extension encouraging people to look at different

perspectives. In their article, they point out that selective exposure is simply easier and

avoids cognitive dissonance (p. 1). They also warn that “exposure to diverse views is a

necessary ingredient in deliberative debate, which political theorists argue is necessary for

a healthy democracy” (p. 2).

I would argue that selective exposure leads to negative outcomes in the more

general case where two different parties, political or national, need to cooperate for mutual

benefit. While the political system in the US has constitutional protections allowing the

2

free flow of information, many people have created self-censoring environments by

falling into the pitfalls of selective exposure, especially when reading about topics such as

international relations or trade policy. This is due to the fact that, as different as one

argument may be from another, most citizens of a country reading international news are

going to be reading it in the context of how it affects their country. It’s just like reading an

article in your local newspaper about last night’s performance of the hometown sports

team—coverage is going to be biased towards the home team. This is obvious and its

reasons are self-explanatory. Fingar and Fan (2013) convincingly argue that reducing

misperceptions requires frequently asking “what are you doing and why are you doing it”

type of questions (p. 132). Short of speaking directly with someone in a foreign country,

reading the news articles from that country’s press can begin to answer these questions.

To facilitate the retrieval of news articles about the same topic in both English and

Chinese so that, through the process of reading both sets of articles, a reader may possibly

uncover previously unconsidered perspectives, this thesis develops an application that

topically clusters English and Chinese news articles. The application has a web interface

that is localized to both American English and Simplified Chinese. It crawls the web for

articles and clusters them daily so that both Chinese or English readers can visit the

website and browse that day’s news. As the purpose of the application is to compare and

contrast viewpoints, only those clusters that contain articles in both English and Chinese

are presented to the user.

3

Chapter 2

Prior Work

This thesis is most similar in nature to two strains of work, one developed at

Columbia University and another from a 2013 thesis by two master students of the

Chalmers University of Technology in Gothenberg, Sweden.

Kathleen McKeown and her team at Columbia University developed an

Information Retrieval/Natural Language Processing (IR/NLP) application entitled

“Newsblaster” (Evans, Klavans, and McKeown, 2004; K. R. McKeown et al., 2002;

K. McKeown et al., 2003; K. McKeown, Passonneau, Elson, Nenkova, and Hirschberg,

2005). Newsblaster crawled the web for news articles, grouped news articles together by

topic, created text summaries of the resulting clusters, tracked stories across temporal and

linguistic boundaries, evaluated the efficacy of machine-generated summaries versus

human-generated summaries, and even expanded the article clustering to multiple

languages. Their stated goal of the multilingual Newsblaster system is to allow users to

compare articles about the same topic from multiple different perspectives that may arise

from articles written in different languages—a goal quite similar to that of this thesis.

While the Newsblaster website is still accessible on the internet as of August 2017, its

final article scraping run was in January 2016 and did not include any non-English articles.

Conceptually, Newsblaster and this thesis share a common approach and goal. The

4

first four steps of Newsblaster’s processing pipeline are the same as those followed in this

thesis: (a) crawl news articles, (b) extract text, (c) translate, and (d) cluster. Multilingual

Newsblaster then summarizes the clusters and classifies the summaries into common,

predetermined news categories, such as world, sports, finance, etc. This thesis neither

summarizes the articles nor attempts to classify the articles into predetermined categories.

Unlike Newsblaster, this thesis places multilingual clustering front-and-center, whereas in

Newsblaster it seemed to be a peripheral interest. It also localizes the interface and

provides translations of articles to allow use by both English- and Chinese-speaking

audiences.

David Evans was one of the doctoral students working on Newsblaster and its

influence on his PhD dissertation (Evans, 2005) is clear. This work, “Identifying

Similarity in Text: Multi-Lingual Analysis for Summarization,” was primarily concerned

with multi-lingual text similarity. In it, Evans created a framework called SimFinderML

that allowed him to extract sentences of text in two different languages that are about the

same thing. He focused on Arabic and English, but the framework he created can be

extended to other languages and allows for manipulation of the different parameters used

to calculate text similarity.

There are various applications for finding similar sentences in two documents

about the same topic. Evans demonstrated two: better machine translation and the

identification of sentences present in both articles and those that are unique to one article.

The former application is based on the hypothesis that if two sentences are very similar,

it’s plausible that one can be replaced by the other. The latter application provides a

starting point for exploring which parts of an article are unique to a language or culture

and which are common across languages. Sentences present in one article but not in

another may be indicative of divergent perspectives on an event.

This thesis borrowed many of the ideas from Evans’ dissertation and applies them

to cross-lingual article clustering. One of the more notable inspirations is the extraction of

5

different types of features, such as nouns, verbs, named entities, etc. from an article and

the use of an empirical test to determine which features most accurately predict similar

text. This thesis, like Evans’ dissertation, is interested in building tools that facilitate the

discovery of different perspectives across languages. The main differences between the

two are that SimFinderML’s scope in finding similarity is at the sentence level while this

thesis’ scope is at the article level, and that this thesis makes no attempt to offer a solution

for better sentence translations.

A few years later in Sweden, Lönnberg and Yregård (2013) wrote a master’s thesis

on monolingual news article clustering. Their work focused mostly on algorithmic

efficiency and online learning. They reviewed all of the major clustering algorithms,

similarity measures, and preprocessing techniques—a helpful overview of the tools in the

toolbox available for working on similar applications. They also developed their own

clustering algorithm, called incremental clustering, and stated that it worked well,

especially for the case where news articles are incrementally added to a dataset as they are

published (p. 41). To measure the effectiveness of the incremental clustering algorithm,

they classified a set of news articles and measured how well the various tested algorithms

met their classification expectations. This thesis is similar to Lönnberg and Yregård’s but

one obvious difference is the inclusion of multiple languages. Additionally, Lönnberg and

Yregård’s thesis is concerned more with algorithmic analysis and efficiency while this

thesis is more concerned about producing good clusters and developing an application to

uncover and present interesting perspectives hidden behind different languages.

The next set of works similar to this thesis take computational approaches to

designing information retrieval and presentation systems and attempt to counteract

confirmation bias and selective exposure by encouraging readers to encounter diverse

perspectives in the news. Two notable implementations are NewsCube by Park, Kang,

Chung, and Song (2009) and the Balancer Chrome browser extension by Munson et al.

(2013).

6

In their paper about NewsCube, Park et al. stated that their motivation for

developing NewsCube was to mitigate the effects of media bias. They proposed achieving

this by providing a user with multiple articles on the same topic from a variety of different

perspectives. They defined the process of different news sources framing a story as the

particular “aspects” of the story—one news source may emphasize one aspect of a story

while another news source might emphasize another. NewsCube grouped different aspects

together to create “aspect-based browsing.” Park et al. also defined an extraction

technique they called “News Structure-based Extraction,” which applies discrete

gradations of importance to different parts of a news article. For example, they noted that

most articles adhere to the inverted pyramid model, so when grouping stories together

News Structure-based Extraction increases the importance of the terms in the first

paragraph. They found that Hierarchical Agglomerative Clustering (HAC) algorithms

perform well in the unsupervised classification of news articles. To determine the

effectiveness of their system, they had multiple user-groups evaluate the clustering results.

Like NewsCube, Munson et al. (2013) built a Chrome browser extension in an

attempt to mitigate media bias and selective exposure. The browser extension “Balancer”

provides users with a check on the bias of the information they’re viewing. It classifies all

English news sources on a scale from conservative to liberal and tracks browser usage. It

then constructs weekly histograms of the political segments that each read news article

falls into and, in certain cases, even suggests alternate sources to help balance news

consumption. After conducting user trials, Munson et al. found that a minority of users

viewed a small number of articles that fell outside of their normal conservative-liberal

segment in the histogram. They also found that being exposed to the histogram inspired

some users to explore more centrist news sources.

This thesis draws inspiration from both articles. It experiments with news

structure-based extraction in its data-processing step and HAC algorithms in its clustering

step, as Park et al. did with NewsCube. Yet in the end, for reasons discussed later, the

7

application provided with this thesis employs Density-Based Spatial Clustering of

Applications with Noise (DBSCAN), not HAC. Unlike NewsCube, this thesis is not as

interested in finding different political viewpoints within a single language, but rather

uncovering the divergent perspectives that become apparent when viewing articles about

the same topic in multiple languages. The work by Munson et al. (2013) remains relevant

to this thesis because it demonstrated that providing alternative sources of information to a

user and telling a user that they are selectively exposing to themselves only one particular

viewpoint is not adequate to change that user’s behavior, a discouraging outcome that

unfortunately this thesis does not attempt to remedy.

Also related to this thesis are works that explore comparing words and documents

across languages. Two interesting approaches are explicit semantic analysis through

Wikipedia’s interlanguage links and a multilingual thesaurus for determining similarity

such as EUROVOC for European Union (EU) languages.

Utilizing Wikipedia’s knowledge graph, Hassan and Mihalcea (2009) were able to

infer the semantic relatedness of two words in different languages without taking into

account the meaning of the words. Their model uses explicit semantic analysis (ESA). For

each word, a vector is constructed containing the number of instances each Wikipedia

article contains that word and these concept vectors are then compared using techniques

from linear algebra. Hassan and Mihalcea modified the original ESA algorithm to take

into consideration that most concept vectors are sparse by using overlap as the similarity

metric between vectors rather than traditional approach of cosine similarity. They also use

Wikipedia’s category graph to promote category-type concepts in their vectors by giving

them a higher weight.

To evaluate their model’s performance, they had the gold standard of semantic

word relatedness (the Miller-Charles and Finkelstein English word-relatedness datasets)

translated into other languages. Their model produced outcomes comparable to the state

of the art of monolingual similarity metrics for both monolingual and cross-lingual word

8

pairs. These results are very interesting and while I originally planned to include their

multilingual semantic relatedness work into a similarity metric, in the end I did not

because speed is an important factor in usability and on the fly analysis of every word in

two documents is computationally expensive. Consequently, I used the more traditional

approach to document similarity: term frequency/inverse document frequency (TF-IDF).

This thesis is also clearly different from Hassan and Mihalcea (2009) because it considers

the similarity between articles rather than individual words and does not use Wikipedia as

a knowledge source.

Every single official document that the EU produces must be translated into each

of its member states’ official languages. This is an excellent trove of parallel texts for

Natural Language Processing (NLP) researchers. Steinberger, Pouliquen, and Hagman

(2002) used one set of EU-created parallel texts in conjunction with the EUROVOC

thesaurus, an EU-sponsored multilingual thesaurus, to identify translations and to compute

similarity metrics between documents. Most of their work was done across English and

Spanish documents, but they note that their methods are applicable to any language pair

from EU member states.

The EU manually labels each official document with one or more terms from the

EUROVOC thesaurus for indexing purposes, and Steinberger et al. used these labels to

statistically associate certain terms in the documents with each of the tagged terms from

the thesaurus. They were then able to compute a similarity metric between documents as

well as a binary prediction as to whether or not the two documents were direct translations

of one another. For English to Spanish, for example, they were able to deduce that two

documents were their corresponding translations 88% of the time.

This thesis adopted the concept from Steinberger et al. (2002) that parallel texts are

most similar to one another and applied this intuition to parallel articles from the New

York Times in Chinese and English. These parallel articles were used as an evaluation

metric to determine which syntactic and semantic features from articles are most

9

predicative of similarity. On the other hand, this thesis does not statistically associate

terms in documents with external tags from a thesaurus.

More recently, researchers have written a number of articles on the classification

and clustering of topics on Reddit. Reddit, is the world‘s fifth most frequented website,

provides forums for different topics, and each topic is known as a subreddit. Two articles

investigating subreddits are worth mentioning in particular with regard to this thesis

because of their explicit application of NLP to understanding politics and their use of

discovering clusters in unclassified data and unique approaches to visualization.

After presidential-candidate Hillary Clinton’s infamous “deplorables”

categorization of then-candidate Donald Trump’s supporters during the 2016 US election,

people became curious to explore exactly who these Trump supporters were and what

opinions they held. In “Dissecting Trump’s Most Rabid Online Following” (Martin,

2017), Martin used Latent Semantic Analysis (LSA) to analyze the activity of users who

commented on multiple subreddits. In traditional LSA, word collocations between two

different documents are used to determine the similarity of one document to another,

usually via calculating the cosine similarity between two documents mapped into a

multidimensional coordinate space. In Martin’s article, the collocations were the users

who commented in multiple subreddits, and each subreddit was then mapped into a space

containing all of the different subreddits. Martin paid attention to the largest pro-Donald

Trump subreddit, /r/the_donald, and on those subreddits which users who frequented

/r/the_donald commented. Then, Martin used simple linear algebra operations, such as

adding and subtracting the vectors created by each subreddit, to obtain insights into which

subreddits are similar and which are different. Like Martin’s research, this thesis used

concepts from linear algebra to determine the similarity of two articles. One prominent

area where this thesis diverges from Martin’s approach is that it does not use explicit LSA

with collocations, although it explored (but rejected) the similar concept of expanding a

document’s word vector with synonyms of each word.

10

About a month after “Dissecting Trump’s Most Rabid Online Following” was

published, McInne published an article that explored different methods of clustering

subreddits based on the collocation data from Martin’s work (McInne, 2017). His research

explored what a graph of the 10,000 most popular subreddits would look like in two

dimensions. To do this, he created a popularity ranking by adding up the magnitude of

collocation data for a reddit prior to normalization. Then, he demonstrated how to use

SciPy’s sparse matrix data structure to create a large 2D-matrix of collocation data, with

the value of a location in the matrix being the number of co-commentators two subreddits

have with one another. Since the dimensionality of each vector is still quite high, McInne

used Singular Value Decomposition, a linear, slightly-lossy compression technique, to

reduce the matrix to 500 dimensions. Then, to visualize the data in two dimensions, he

employed the LargeVis non-linear dimensionality reduction technique. Next, the

subreddits were clustered using the Hierarchical Density-Based Spatial Clustering of

Applications with Noise (HDBSCAN) algorithm. Finally, he covered how he created both

interactive and static visualizations of the clusters. This thesis borrowed some concepts

from McInne, most notably the use of a density-based clustering algorithm because the

number of clusters is unknown a priori and the set of new articles contains noise.

11

Chapter 3

The Web Application

3.1 Software Development Requirements

This section presents the design, functional, and performance requirements for the

application developed in this thesis. It describes these requirements in imprecise language

of the type generally avoided in technical documentation or Request for Comments but

typical of the software industry’s product owner-created requirements documentation.

3.1.1 The Target Audience

When developing any software application, it is important to have a clear vision of

the anticipated user group. For this application, the anticipated users have an average level

of technical competence. They use the application in one of two ways: for casual

browsing or for research. They are American or Chinese and have a passing ability in the

foreign language. They prefer to read articles in their native tongue. They probably study,

or have studied, international relations, Asian studies, or American studies.

The casual browser is motivated primary by curiosity. He may find coverage of

international news repetitive or formulaic and have an intuition that the foreign press

reports on topics quite differently. Currently, he isn’t very adept at finding foreign

12

language articles but searches for them from time to time. This application fulfills his

need to locate quality articles without having to go through the trouble of trying to find

articles from a foreign press. After being introduced to this application, he uses it

infrequently as it is not his primary source of news. His visits to the website correspond to

those times that there’s a noteworthy international affair involving China and the US.

Another possible user is the researcher. The researcher works for the government,

a think tank, or academia. If he works for the government, he may be tasked with

compiling or analyzing foreign press to brief bureaucrats in the state department or foreign

ministry, or for one of the many intelligence gathering agencies. His current process of

finding these articles is to visit a preset list of foreign news sites and manually search

through the headlines to find those stories relevant to international affairs. After being

introduced to this web application, he finds it more convenient than his previous work

process and uses it on a daily basis. The application helps him find stories so he can

compile a report on how the foreign press is covering a particular issue. If he works for a

think-tank or academia, he is probably doing research on an ongoing, long-term issue that

comes up in the media quite frequently. He uses the application to keep an eye out for

when articles about this issue are published.

3.1.2 Visual/Design Requirements

The application’s information hierarchy and visual design must assist the causal

browser or researcher accomplish their respective tasks. To that end, the presentation of

the application must be similar in style to a typical news sites. On any page, the user must

be able to change the application’s language to either English or Chinese. Article

headlines must must all be in the same language and correspond to the presentation

language of the website. Each headline should have a visual indicator of what the article’s

original language is.

The home page of the application should have stories from the last four days

13

composed into their respective clusters. Each cluster should display at most five stories,

though if there are more stories in the cluster the user must be able to expand the cluster to

see them all. Each cluster of stories should be organized in a block, similar to Google

News. Clicking on a story should link either directly to the source or to a Google Translate

version of the original article translated into the user’s chosen language.

There must be a way on the homepage for the user to modify the date. Upon

changing the date, the interface presented to the user should be the same as the home page

but present articles published around that date. The user should always be able to navigate

back in the application by using the browser’s back button.

3.1.3 Functional Requirements

To support the use cases described above, certain functional requirements must be

met. These include presenting articles from multiple English and Chinese sources,

updating the site regularly with new articles, localizing the content to the user’s language,

and making the website publicly accessible at a well-known URL. Each of these

functional requirements is further explained below.

The application must aggregate news from a variety of English and Chinese

sources. Both Munson et al. (2013) and Park et al. (2009) note how any one particular

news source is going to have its bias. Therefore the more news sources, the better. At a

minimum, there should be at least three news sources for each language included in the

application. Since news is published regularly and published news changes frequently,

news websites should be scraped on a frequent interval, at a minimum once a day.

As the application is meant for both Chinese and American users, it must be

localized and internationalized into simplified Chinese and American English. The user

must be able to select one of the two display languages at the top-right of the application.

All text must then be displayed in the chosen language. Dates and times must likewise be

in a format corresponding to the chosen language. Upon visiting the website for the first

14

time, the application should attempt to determine the user’s preferred language by

inspecting the Accept-Language HTTP header. If the user manually changes the

display language while visiting the application, that selection must persist across multiple

sessions.

Lastly, as a web application’s usefulness is limited by the ability of a user to find it,

the application must be available at a well-known, static URL. For this application, the

homepage must be located at:

http://www.plaintexttransmissions.org/news

The final requirements are in regards to performance. Since the application is

always online and articles are added to its collection on a regular basis, it is infeasible to

pre-cluster articles. Therefore, the daily clustering algorithm must perform well enough to

execute on demand whenever a user visits the application. The speed of clustering 100

articles should be less than 200ms, or common attention diversion techniques, such as

loading icons, should be presented so that the user perceives the application as fast.

Additionally, as the application gathers and processes articles on a regular basis, the time

required to gather the articles should never exceed the interval between its invocations.

3.2 Users Guide

This short guide explains how a user with a web browser can use the application.

Visiting the web application

The web application can be browsed using an up-to-date version of Google

Chrome, Chromium, Apple Safari, or Mozilla Firefox. The homepage’s address to type

into the browser is:

http://www.plaintexttransmissions.org/news

15

Browsing the latest articles

After navigating to the web application’s internet address, the homepage will

appear as in Figure 3.1:

Figure 3.1: The homepage upon first visiting the website

The homepage defaults to the current date with an added date range of plus/minus

three days, meaning that by default the application will display clusters from the last four

days. The application will attempt to guess the correct user interface language based on

the browser and if it guesses wrong the interface’s language can be updated at the top-right

of the screen. Next to the language selection is a cog which, when selected, displays the

16

advanced settings.

Each of the colored rectangles in Figure 3.1 is a “story card.” A story card is a

group of articles about the same topic. Each story card contains, at a minimum, two

articles about the same topic. Each card displays the first few articles in a cluster, and if

there are more the arrow in the bottom right can be clicked to expand the card and show

all of the articles. Figure 3.2 shows an expanded card:

Figure 3.2: Clicking on the disclosure icon in the lower-left expands the story card

17

Changing the date

The date at the top-left of the screen is interactive and can be modified by clicking

on it and selecting another date. Clicking off of the pop over saves the selection and the

page can be reloaded with the new clustering date by clicking the search button.

Figure 3.3: Clicking on the calendar allows selecting the center date for clustering the arti-

cles

18

Changing the date range for the story card generation

By default, the story cards are generated for a four-day date range starting four

days ago up to the present. In certain cases, it is informative to narrow the date range to

only one or two days. It is possible to narrow the date range of the articles used for story

card generation from seven days (plus/minus three days) to one day (plus/minus zero

days). Clicking the up and down icons in the plus/minus stepper changes the number of

days before and after the central date to generate clusters from. To then search with the

new date range, click the search button.

Figure 3.4: Expanding or constricting the number of days around the center state for clus-

tering

19

Changing the web application’s language

The application’s interface defaults to either English or Chinese. It attempts to

choose the correct one for each user by detecting a preference in the Accept-Language

HTTP header. If it does not detect a preference, or if the user prefers to use the site in a

language that is not the browser’s default, then it is possible to change the language by

clicking on the preferred language at the top-right of the screen. If the preferred language

is changed, it is retained across visits to the application by storing a cookie in the browser.

Including/Excluding news sources

All news sources are included in the story card generation by default. To exclude

certain news sources, click on the advanced settings cog at the top-right of the screen and

modify the news source selection. Clicking off of the advanced settings pop over saves the

selection and reloads the page if the settings have changed.

20

Figure 3.5: Clicking on the cog opens the advanced settings menu

21

Chapter 4

Implementing Cross-Language News

Article Clustering

4.1 Architectural Overview

There are two main components of the application: the service that collects and

processes news articles from the web and the web application that clusters the articles,

localizes them for the intended audience, and presents them to the user. The entity that

links the two components together is a shared PostgreSQL database. A diagram of the

entire system can be seen in Figure 4.1.

22

Figure 4.1: A high-level overview of the system architecture

4.1.1 The Article Service

The article service is written in Python 3.6 and deployed on a Fedora Linux server.

This same server also has an installation of Stanford CoreNLP, used for annotating and

tagging English and Chinese texts. A cron job, which is a task that one can schedule an

operating system to execute on a set interval, runs the article service daily. The service’s

first stage scrapes Chinese and English sources for new or recently changed articles. After

fetching an article’s text, the service extracts the text from the article and removes any

structured data markup. The output of the text processing stage is saved to a PostgreSQL

database. The first stage ends when all articles have been fetched and saved. The second

stage is text analysis, where each article’s text is sent to the Stanford CoreNLP program to

be tokenized, lemmatized, and have its tokens’ part of speech tagged and named entities

23

identified. The output of this analysis is saved alongside the article’s text in the database.

The article service’s third and final stage is to look for each Chinese article that has not yet

had its tokens and headlines translated, translate these tokens and headlines into English,

and save the results back into the database.

Figure 4.2: The article service’s architecture

4.1.2 The Web Application

As noted above, the web application runs on a Fedora Linux server hosted in

Amazon Web Services (AWS). It is served using Gunicorn, a Web Server Gateway

Interface (WSGI)-compliant pure-Python application server. Nginx is placed in front of

Gunicorn and serves static resources, such as images, javascript and css files, and pure

HTML files. Requested URLs whose path’s first component is “static” are handled this

way. Requests for other URLs are proxied by Nginx to the Gunicorn application server.

Nginx and Gunicorn communicate with each other over a standard Unix-domain socket.

When a user navigates to the web application’s home page, the application clusters

24

the articles for the current date. Every query to the web application is made in the context

of a query date, defaulting to the current date. The query date is the center of a

user-specified date range, which defaults to three days before and after the query date and

constrains the timespan of articles to be clustered. When a query is made, the application

fetches the articles published within that date range and clusters them. It also provides a

localized and internationalized user interface by using a combination of Django’s built-in

tools (see section 4.2.2), GNU gettext, and the translated versions of headlines previously

saved into the database.

Figure 4.3: The web application’s architecture

4.1.3 The Database

An AWS-based, Fedora Linux server has an installation of PostgreSQL (see

section 4.2.3). The database is shared between the article service and web application.

25

4.2 Technology Options and Choices

There are a number of different libraries and frameworks that the application uses

to meet its requirements. I’ve divided the technology choices below into the subsystem

they’re used in: the article service, web application, and database. Some, like Python 3.6,

are used across multiple subsystems. In such cases they are listed in the first subsystem in

which they appear.

4.2.1 For the Article Service

CPython 3.6

The core of the article service’s logic is written in Python targeting the 3.6

CPython runtime. There were a few different options I considered when it came time to

choosing an implementation language. I first looked at what languages were being used in

NLP applications and found that many of them were written in Java, Python, and C++.

Anticipating that I would rely on code libraries and frameworks written by others, the

easiest and most straightforward way to integrate their code would be to use the same

programming language these frameworks used. By doing so, I could simply link to them

during compilation (C++) or load them at runtime (Java, Python). Additionally, in order to

increase my own productivity, the implementation language choice needs to intersect with

the set of programming languages I am fluent in. This eliminated C++ from the list of

possible choices.

As NLP applications tend to be expensive in both time and space, my initial

inclination was to write the application in Java. OpenJDK’s implementation of the

HotSpot Virtual Machine (VM) is highly performant: just-in-time compilation helps

programs run fast, its generational garbage collection manages memory efficiently, and

the VM has none of the constraints regarding parallelism that Python has with with its

26

global interpreter lock (GIL). Additionally, the Stanford CoreNLP library and many web

application frameworks are written in Java, so integration with these programs would be

trivial if I implemented the article service in Java.

Yet the more research I did, the more I found that most practitioners of the

machine-learning/data-science subfields, as well as many academics and researchers

working on NLP, use Python. Choosing Python would allow me to leverage the tools that

they use, such as the venerable numpy (Walt, Colbert, & Varoquaux, 2011), SciPy (Jones,

Oliphant, Peterson, et al., 2001), and Pandas libraries (McKinney, 2010), and learn from

the tutorials and articles these practitioners and researchers publish. Additionally, my

concerns about Python’s performance with regards to the GIL and the fact that it’s an

interpreted language have been somewhat alleviated by the fact that many of the

CPU-intensive algorithms needed to carry out NLP tasks are delegated to compiled native

C extensions. These extensions have no restrictions around threading or locking other

than those placed on them by good programming practices.

Stanford CoreNLP

One of the steps that Evans (2005) employs to identify similarity in a multilingual

text corpus is feature extraction based on different components of the text. These

components include parts-of-speech, named entities, dates, and WordNet synsets. As this

application must be able to process both English and Chinese texts, I had to find a library

capable of performing these tasks for both languages. The natural choice was the Stanford

CoreNLP software package by Manning et al. (2014). CoreNLP is written in Java and

many of its lower-level NLP functions are accessible solely through a Java interface.

Lucky for me, it can also be run as a web application that exposes a high-level NLP tasks

by passing JSON messages over HTTP-transport. These tasks, such as tokenization,

lemmatization, named entity recognition, and part-of-speech tagging, are sufficient for

this application. The article service takes responsibility in managing the life cycle of the

27

CoreNLP service. It starts CoreNLP up after the service has scraped the articles and is

about the begin the analysis phase and terminates it when the service is complete.

Scrapy

Scrapy is “an application framework for crawling web sites and extracting

structured data” (Hoffman et al., 2017). There are a couple of different approaches that

can be used to gather text from news articles. The first and easiest is to interact with a

news source’s application programming interface (API), if one is available. Sites like the

New York Times and CNN provide APIs for developers to access part of their published

content fairly easily. Some of these APIs do not provide all of an article’s text, in which

case the article service could interact with the API to uncover metadata such as where the

full text of the article is located and when it was published. A second option is to simply

use a HTTP library and write a one-off program that downloads articles from a news

source. Once HTTP content is retrieved, a XML parsing library can be used to extract the

desired content. This approach is the most customizable and can be used with any news

source that publishes content on the web, no matter the structure of that content. A third

option is to use a web scraping framework, a choice which on one hand imposes

restrictions but on the other can make many tasks trivial to implement.

The approach that the article service uses is a mix of direct API access and scraping

framework. After consulting with Ryan Mitchell, Harvard Extension School alumni and

author ofWeb Scraping with Python: Collecting Data from the Modern Web who

recommended Scrapy, I decided to center the scraping process around Scrapy (Mitchell,

2015; Mitchell, personal communication, January 27, 2017). Scrapy comes “batteries

included,” meaning many of tasks commonly encountered while extracting content from

the web are already implemented (to a certain degree). For example, Scrapy provides a

hook that the application integrates with in order to save each article it downloads into the

PostgreSQL database. It also allows one to fill out login forms trivially, which is necessary

28

in cases where news sites are blocked by paywalls. Most beneficially, the marginal cost of

adding news sources is low when compared to a completely custom solution.

Psycopg2

Psycopg2 is a Python wrapper around the libpq PostgreSQL client library written

in C. It implements the Python Database API, Version 2 (Lemburg, 1999), which is a

Python standards document defining an API that different Python database access

modules are encouraged to implement. While there are a few different Python

PostgreSQL client libraries (see Fuxjäger (2017) for additional possibilities), psycopg2’s

adoption by large Python frameworks such as Django has made it the de-facto standard

PostgreSQL client library for Python.

Google APIs Python Client

There are many different options for machine translation of Chinese to English

text. One could choose a service provided on the web or install software that provides

machine translations on a local computer. As the quality of the output of statistical

machine translation systems is often proportional to the number of example texts

translational models have been trained on, it should be no surprise that companies such as

Google, Microsoft, and IBM are large players in the translation software-as-a-service

(SAAS) field.

Since the translation strategy the article services uses is word-by-word translation,

a basic machine translation would work fine. Two areas that an online SAAS solution

outperforms a simple bilingual dictionary lookup are when it translates names and novel

modern vocabulary. As news articles prominently feature names and writing style evolves

over time, an online service suits these needs well. Microsoft is currently (as of May

2017) running a promotion with their Cognitive Services translation API, providing two

million characters per month for free. The Google Translate API, on the other hand, costs

29

$20 per million characters. Thinking about the price savings, I first integrated Microsoft

Cognitive Services into the article Service. During the integration process it became clear

that the Cognitive Services APIs were unwieldy and not-well documented, so I switched

to Google Translate and used Google’s published Python client for Google APIs. The

simplicity of the interface and the fact that it worked “out-of-the-box” made the choice to

stay with Google Translate services easy, notwithstanding the higher cost. Targeted

per-word translation caching cut down on the cost significantly.

4.2.2 For the Web Application

Numpy

When it comes to numerical processing in Python, numpy has converged as the

de-facto standard library. Its best-known feature is its N-dimensional array, constructed in

sequential memory space. This is unlike Python’s oft-used List type, which looks like an

array but is actually a linked-list. Python does have a built-in array datatype, but numpy

supports multidimensional arrays whereas the Python array datatype does not. The

N-dimensional array also provides highly-optimized vector and matrix-based linear

algebra operations, as well as random number generation capabilities. Scipy, scikit-learn,

and matplotlib are all built on top, use extensively, and/or integrate very well with numpy.

SciPy and scikit-learn

SciPy is built on top of numpy and is a collection of functions and algorithms

implemented in Python to provide a toolkit for scientific computation. It is similar to

MATLAB in scope and purpose. SciPy itself contains a number of packages offering

distinct functionality, such as the linalg package for linear algebra and the fftpack

package for fast fourier transform routines (Jones et al., 2001). Most relevant to this

application is its cluster package, which provides algorithms for clustering data.

30

Integrating with SciPy is scikit-learn, a Python package providing a collection of

machine-learning algorithms (Pedregosa et al., 2011). Its algorithms can be divided into

two high-level groups–supervised and unsupervised learning. In the supervised group of

algorithms, scikit-learn provides implementations of both discrete and linear predictors

such as Bayesian Regression, Perceptron, and Stochastic Gradient Descent. In the

unsupervised category of algorithms, it provides implementations of DBSCAN, Spectral

Clustering, K-Means, and both agglomerative and divisive hierarchical clustering.

Additionally, scikit-learn provides functions to evaluate the effectiveness of different

algorithms as well as functions to pre-process and transform datasets. The web application

employed both scikit-learn’s implementation of hierarchical and DBSCAN clustering.

Natural Language Toolkit

Natural Language Toolkit (NLTK) is a Python library implementing many

frequently used natural language algorithms (Bird, Loper, & Klein, 2009). Its impetus is

both pedagogical and practical–pedagogical because it provides an e-book on NLP for

students first learning about Python and NLP and practical because many of the

algorithms implemented, while not necessarily the most efficient, have real-world

applications. It is meant to make NLP more accessible to beginners, to this end it comes

pre-packaged with over 50 of the most popular corpora, from inauguration speeches to

WordNet. Its built-in functionality includes tokenization, stemming, tagging, parsing, and

semantic reasoning. As most of the NLP tasks, including tokenization and stemming, are

performed by the article service, NLTK is used only for its WordNet synset expansion

capability. A synset is a group of semantically equivalent words. Synset expansion thus

returns all of the words in the same synset as an input word. Synsets were explored as one

of the inputs to the clustering algorithms.

31

Matplotlib

Matplotlib is a Python library that excels at drawing 2D graphs (Hunter, 2007). It

integrates with multiple graphic backends and can output various types of images, from

PNGs to JPEGs to PostScript files. Most Python developers creating 2D graphs use

Matplotlib, and non-developers used to using MATLAB find Matplotlib’s API familiar

(the original author strived to emulate MATLAB’s API). All of the graphs and plots

included in this thesis, for example, were created using Matplotlib.

There are a few other Python plotting libraries available, each bringing with them

different strengths and weaknesses. Two in particular could have worked for this

application are Plotly and Bokeh. Both are interactive and render their graphs in the

browser. Plotly is run on a SAAS model and charges each time one of its graphs is

rendered. Bokeh, on the other hand, is open source and licensed under BSD 3. I didn’t use

either of these options because, having been around a long time, Matplotlib is the de-facto

standard and has excellent documentation, which is particularly useful when working with

a new library.

Django Web Application Framework

There are many different Python web frameworks to choose from, the most

notable being Django, Flask, and Pyramid. Brown (2015) from RedHat has written a good

comparison of these on his website, which I used when deciding which web framework to

use for this application. In the end, I chose to use Django for this application for a few

reasons (Django Software Foundation, 2017) . The first is my familiarity with the

framework–I have used it in the past so I am already familiar with many of its APIs. The

second is that Django has excellent documentation–the online documentation is

comprehensive and kept up-to-date and there are many books about Django (see Two

Scoops of Django: Best Practices for Django 1.8 by D. R. Greenfeld and Greenfeld

(2015) for a good example). Lastly, Django has first-class support for PostgreSQL

32

databases, which both the web application and the article service use. This meant that the

article service, which uses psycopg2 to access the database, could continue to do so

unchanged by the fact that Django would be using its built-in object-relational mapper

(ORM) to access the database.

Gunicorn

The Django Web Application Framework itself provides a development HTTP

server, and during the development process most developers use this server for its

simplicity. This built-in webserver is not appropriate for production applications because

it processes requests serially, meaning that only a single request can be serviced at a time.

For production applications, a web server that can handle concurrent requests is needed.

Gunicorn and Waitress are two options, but since Gunicorn was the recommended and

supported by an industry platform-as-a-service provider Heroku, I felt more assured that it

was a strong product.

Gunicorn is a WSGI-compliant Python application server. By default, it services

requests using a pre-fork worker model. A pre-fork worker model implies that there is a

pool of worker processes available to service HTTP requests, and one central coordinating

process receives the requests and doles them out to worker processes. Gunicorn must be

run behind a proxy server that buffers requests and responses so that the worker processes

are not held up by slow clients. This application uses Gunicorn’s default worker type,

which is the synchronous, process-based worker. Alternatively it could have used

asynchronous workers or thread-based workers, but at this point there is not a compelling

use case to do so.

Nginx

Gunicorn recommends using Nginx as a proxy server to process requests. Nginx is

thus installed globally on the Fedora Linux server and is managed by systemd. The proxy

33

server fulfills two important purposes–it buffers slow requests to Gunicorn and serves all

of the web application’s static content. It’s configured to run under a non-privileged user

account.

4.2.3 For the Database

PostgreSQL database

There are a plethora of relational database options available, such as MSSQL,

PostgreSQL, MariaDB, sqlite3, and others. When considering that the database must be

well-supported by Python and the libraries and frameworks this application uses, the set of

choices narrowed to MariaDB and PostgreSQL. MSSQL is a Microsoft product and would

be a challenge to integrate with the otherwise Linux-based stack. Sqlite3 is interesting for

small applications but not an appropriate choice for applications with concurrent writing

needs, as the article service’s crawler is prone to do. As covered in “Appropriate Uses for

SQLite,” if the database is separated from its application server by the network, and if

there is a need for concurrent writes to the database, then a client-server database such as

PostgreSQL will work best (Hipp, 2008). In terms of the decision between MariaDB and

PostgreSQL, both would have been fine choices for this application but I chose to use

PostgreSQL because of its excellent Python support by the psycopg2 module.

4.2.4 Profilers

An important prerequisite to writing fast and memory-efficient programs is

understanding algorithmic complexity analysis and the implications of choosing one

particular algorithm over another. This alone, though, in modern software development

contexts, is insufficient for understanding the performance of an application. In a majority

of instances, software developers rely on libraries and frameworks written by others to

implement core components of their applications. Many of the libraries and frameworks

34

listed previously in this section, for example, are highly complex, performance-critical

components for this thesis. Beyond carrying out the time-consuming task of algorithmic

complexity analysis for all of the library functions incorporated into an application,

developers can use other tools to create performance and execution profiles of their

complete program while it executes. After the program’s execution is complete, these

captured profiles can be used to analyze the program’s performance and identify potential

areas for improvement. While developing this thesis, I used two tools—each of which

provided unique insights into different aspects of the application—to fine-tune

performance.

cProfile

There are two main approaches to generating execution profiles for a given

program: deterministic profiling and statistical profiling. Deterministic profiling involves

recording the time that a function or exception handling routine takes to execute. It

usually does this by instrumenting source code with callbacks to functions that record the

occurrence of important events. This implies that additional computation is carried out

when these events occur, causing significant overhead to the runtime performance of the

program under profile. Likewise, statistical profiling affects the speed of the executing

program by periodically generating interrupts to record the location of the profiled

program’s instruction pointer, though the negative runtime impact of statistical profiling is

usually only a fraction of that of deterministic profiling. After the completion of the

recording process, statistical profiling programs are able to infer how many times a

function was executed and how long its execution took based on these captured instruction

pointer locations.

The Python Standard Library (STL) includes two deterministic profilers, the

profile and cProfile modules. profile is written in Python, and, as its name implies,

cProfile is written in C. They have similar programming interfaces, so for standard uses

35

the Python documentation recommends using cProfile for its non-interpreted (and

quicker) execution. These profilers use three hooks that the Python VM provides to record

the times that functions are entered and exited, as well as the times that exception events

occur. The Python module pstats works in conjunction with cProfile to filter, sort, and

display a captured execution profile. I used these modules to understand the execution

profile—and to identify optimization opportunities—for many of the algorithms in

Section 4.4.

Django Debug Toolbar

As one of the premier web application frameworks for Python, Django provides

many high-level programming abstractions, such as view templates and an ORM, that

make developing dynamic web content simpler and quicker. It is very important that a

developer properly understand these abstractions prior to developing a Django-based web

application. As is often the case, the higher the level of abstraction the more important it is

to understand its correct usage in order to guarantee optimal performance. The improper

use of a high-level abstraction often leaves developers unsure as to why their program

doesn’t work the way they intended it to or performs poorly.

Using the ORM, in particular, has a steep learning curve. It isn’t always obvious

how to create non-trivial queries using Python syntax, nor is it always clear how these

queries will be translated by the ORM into SQL queries and their performance

characteristics. One of the most useful functionalities that the Django Debug Toolbar

provides is the capture of each ORM query’s post-translated, raw SQL prior to it being

sent to the database (Django Debug Toolbar developers and contributors, 2017). For

example, it might not be evident at first glance that the fetch_articles function in

Listing 1 generates the SQL in Listing 2, but the Django Debug Toolbar allows the

developer to ensure that it does.

36

def fetch_articles(start_date, end_date)
"""Returns articles and new sources published between start_date and end_date

Parameters:
start_date: the earlier timezone-aware datetime
end_date: the later timezone-aware datetime

Returns:
A queryset with only the articles whose publish date is between
those two dates, and their associated news sources.

"""
q = between_dates(start_date, end_date)
q = q.select_related('news_source')
return q.values_list('news_source__id', 'news_source__name').distinct()

def between_dates(start_date, end_date):
ensure that the dates are timezone-aware
for d in (start_date, end_date):

if d.tzinfo is None or d.tzinfo.utcoffset(d) is None:
raise TypeError("Needs tz-aware datetime")

return Article.objects.filter(
pub_date__gte=start_date

).filter(
pub_date__lte=end_date

)

Listing 1: A Python query for the Django ORM

SELECT ***
FROM "article"
INNER JOIN "news_source" ON ("article"."news_source" = "news_source"."id")
WHERE ("article"."pub_date" >= '2017-05-12T00:00:00-04:00'::timestampz

AND "article"."pub_date" <= '2017-05-18T00:00:00-04:00'::timestampz
AND NOT ("article"."corenlp_json" IS NULL))

Listing 2: The raw SQL generated by the Django ORM

I used the Django Debug Toolbar extensively during the development of the web

application for this thesis to understand how the ORM translated Python queries into SQL

and which queries stood out for their positive and negative performance characteristics.

An example of one such application is covered in Chapter 5.

37

4.3 Implementation of Core Components

This section details how different parts of the article service and web application

are implemented. In particular it reviews the PostgreSQL database schema, the Python

class implemented to provide programmatic access to the database, and the

implementations of the article scraper and the Django web application.

4.3.1 The Data Model

There are three tables in the database: news_source, article, and headline:

news_source

A news source is a location on the web from which news articles are scraped.

Column Type

id integer

domain character varying(128)

created_on timestamp without time zone

name character varying(128)

Table 4.1: The database’s news_source table

The news_source table’s primary key is id. Its domain column holds the root

domain of a news source, like cnn.com or nytimes.com. Its created_on column holds the

date and time on which the news source was added to the database. The name column is a

human-readable description of the news source. For example, for cnn.com the name is

CNN.

38

article

The article table holds scraped articles from a news source.

Column Type

id integer

content text

pub_date timestamp with time zone

web_url character varying(1024)

news_source integer

corenlp_json jsonb

lang language enum

Table 4.2: The database’s article table

Like the news_source table, the article table’s primary key is id. The content

column holds the raw, scraped article text. The pub_date column is the article’s

published-on date, to the best accuracy possible. Some news sources only provide the date

and not the time an article is published, and in these cases the pub_date for the article is

set to midnight EST of that date. web_url is the URL from which the article was scraped.

news_source is a foreign key to the news_source table–it is mandatory for each article to

have an associated news source. The corenlp_json column is nullable. When set, it

contains the JSON response of the processing of the article’s content by the CoreNLP

server. Later, if the source article is in Chinese, this column is updated with the translated

tokens are added to the JSON. The lang column holds the source language of the article.

Valid enumeration values for this column are zh-Hans and en.

39

headline

The headline table holds the source and translated language headlines for an

article. The headlines are translated when the articles are scraped rather than when they

are displayed in the web app for two reasons. First, it separates the performance of the

web app from the performance of Google Translate (which has no performance

guarantees). Second, the cost of translation is incurred only once rather than each time the

web application is displayed. The table schema shown in Table 4.3 is simple:

Column Type

id integer

article_id integer

lang language enum

headline text

Table 4.3: The database’s headline table

The id column is the primary key for the table. The article_id column holds a

reference to which article the translation is for. The lang column holds whether the

headline is in English or Chinese, and the headline column holds the actual text of the

headline.

4.3.2 Python Access to the Database

To facilitate uniform access to the database by both the article service and web

application, I wrote a Python class called ArticleDB that is utilized by each of the two

packages. Per the documented best practices in Gregorio and Varrazzo (2016), it is best to

share a single psycopg2 Connection instance across as many threads as are needed, as the

creation of a connection is an expensive operation (often SSL over TCP). With this in

mind, the ArticleDB contains a singleton instance of a psycopg2 Connection class that

40

clients use to create cursors. As Listing 3 shows, a Python context manager can be used

on the ArticleDB class to automatically commit a set of transactions when they execute

successfully or roll back the transaction on failure:

with db_article as db: # commits or rollbacks on exiting scope
db.save_articles(articles)

Listing 3: Using the ArticleDB to obtain cursors over a shared connection

4.3.3 Scraping the Web for Articles

The article service uses the Scrapy framework as its chassis for scraping. An

overview of the system design of the Scrapy framework is shown in Figure 4.4:

Figure 4.4: Overview of the Scrapy framework architecture

The article service integrates with the Scrapy framework at a few key points.

Figure 4.5 uses the same colors and shapes as Figure 4.4 to demonstrate the role certain

41

classes in the article service play the framework. Notice, for example, that

PostgresSqlPipeline corresponds to an Item Pipeline in Figure 4.4 because it is a

light-green rectangle:

Figure 4.5: The article service’s integration with the Scrapy framework

The numbered steps in Figure 4.4 correspond to the items in Figure 4.6:

1. Spiders create HTTP requests.

2. The HTTP requests are passed to a scheduler to schedule.

3. Scheduled requests are returned to the engine.

4. The downloader downloads requests.

5. The downloader returns responses.

6. The spider processes the individual responses.

7. Using the processed response, the spider creates new requests for scheduling

or extracting items.

8. Extracted items are passed to the items pipeline for further processing (such

as saving to a database).

Figure 4.6: Order of operations in the Scrapy framework

42

The top-half of the image uses the same colors and shapes from the architecture

diagram in the bottom half to demonstrate how each class fits into the framework. Each

implementation of a spider that crawls a news source has access to an ArticleDB instance,

which it uses to obtain the datetime a news source was last crawled. If necessary for sites

that require authentication, the spider programmatically logs into the news source. Finally,

the spider begins the crawl and steps 1-7 from Figure 4.6 are executed until completion.

The PostgreSqlPipeline class is plugged in at step 8 and saves each fetched article into

the article table in the database. An article object produced by Scrapy has attributes for

each of the non-nullable columns in the article table. Lastly, each of the headlines is

translated into English and Chinese and saved to the headline table.

43

4.3.4 Django as a Foundation

The Django Web Application’s file structure is put together in a way similar to the

Django “Cookie Cutter” template’s default layout (D. R. Greenfeld, 2017). The interesting

parts are shown below:

clds_web/
├── news/
│ ├── admin.py
│ ├── cluster.py
│ ├── models.py
│ ├── tests.py
│ ├── urls.py
│ └── views.py
└── templates/
└── news/
└── overview_list.html
config/
├── settings
│ ├── base.py
│ ├── __init__.py
│ ├── local.py
│ ├── production.py
│ └── test.py
└── wsgi.py

Pipfile
Pipfile.lock

Figure 4.7: Important code files in the web application

The clds_web.news package is the main Django app responsible for creating the

news article clusters and displaying them to the users. In this package, there are a number

of interesting files:

• admin.py

This module is used for registering the web application’s specific models for the

built-in Django Admin project. By doing so, it’s possible to use the pre-made

44

Django Admin web backend to view and modify the article and news_source

tables.

• cluster.py

This module contains a definition of the Cluster class that retrieves and clusters

articles for a certain date range. The Cluster class contains a set of

topically-related articles and convenience methods to access the article headlines.

• models.py

This module contains all of the definitions of the different models used in the web

application. Most of these classes subclass the Django.db.models.Model class so

they can inherit the Django Object-Relational Mapper’s model management

capabilities. This includes CRUD operations that persist and update database state.

Other models which cannot be mapped one-for-one with database tables do not

inherit from this base class and when they need access to the database use the

ArticleDB’s connection singleton.

• urls.py

Django uses a url mapping scheme to map requests to view classes. This file

contains those mappings. For example:

url(
regex=r'^$',
view=views.OverviewList.as_view(),
name='list'

)

Listing 4: The Django URL route for the web application’s home page

maps the empty path (specified as r'^$') to the OverviewList view.

• views.py

45

This file contains all of the class-based and function-based views in the application.

Many of the views’ layouts are defined by Django templates, which use the Django

Template Language.

• templates directory

The templates directory contains all of the Django templates used in each of the

Django apps. As this web application only has a single Django app news, there is a

news directory nested in the templates directory. Within this directory, there are a

number of template files with html extensions, even though the diagram above only

shows a single file for brevity.

• settings directory

The Python files in the config/settings are used to configure the Django

application. base.py has settings shared across all environments, such as the choice

to use a PostgreSQL backend and layout of the file structure. The local.py,

production.py, and test.py either override or add settings to this base

configuration. For example, the local.py file configures Django Debug Toolbar to

be included in the application in order to aid with development debugging needs.

The production settings file configures generic error messages, whereas in the local

environment it’s helpful to have a complete stack trace.

• wsgi.py

This is the entry-point for a WSGI-compliant web server. Both the Django

development server and the Gunicorn web server use this module as their entry

point into serving the web app.

• Pipfile and Pipfile.lock

These files specify the web application’s Python package dependencies. Pipfile is

modified by developers to specify package and version specifiers, and

46

Pipfile.lock is generated by the packaging tool. Pipfile.lock has the exact

versions of each of the dependencies so that when the application is shared between

multiple developers or deployed to production the particular version of a

dependency is always the same. These files are used in conjunction with a Python

tool called Pipenv, which uses these files to download dependencies and update the

Python runtime path so that it uses a virtual environment. As of July 2017, Pipenv is

still in beta release, but appears to be on track to replace virtualenvwrapper and

standalone pip usage with requirements.txt files.

4.4 Interesting Algorithms

The “story cards” shown by the web application to the user are created using a

clustering algorithm. There are many different clustering algorithms one can choose from.

The applicability and efficacy of a particular clustering algorithm must be determined on a

problem-by-problem basis. This section summarizes a couple of the different algorithms

for cross-language news article clustering, namely hierarchical clustering and

density-based clustering. It also reviews some of the distance metrics and term weighting

algorithms related to classification in NLP. It closes by covering the least-recently used

(LRU) caching algorithm used in the article service’s translation step and details how the

Python standard library implements the functools.lru_cache decorator.

4.4.1 Hierarchical Clustering

There are a few characteristics inherent with clustering news articles across

different languages that one must take into consideration when selecting the particular

clustering algorithm to use. The first is that there are going to be many articles for which

there is no other article about the same topic. A local newspaper will publish stories about

events that may not be covered by other local newspapers or larger regional newspapers.

47

This characteristic is even more prevalent across national borders—the vast majority of

the set of article topics covered in a Chinese newspaper is disjoint with the set of article

topics covered in an American newspaper.

Another characteristic to consider is that news follows current events and what

causes particular events to become newsworthy is unpredictable. News organizations

usually create different sections such as “Finance,” “Sports,” and “International News,”

among others. With a corpus of old news articles and their classification into different

sections, it is possible to predict an unseen news article’s section using supervised machine

learning algorithms. Yet the topics covered in a section are diverse, and the goal of this

thesis is to group articles by topic, not by section. In other words, Chinese ping pong

tournaments should not be included in the same cluster as American fencing tournaments,

even though they both would be published in the sports section. Consequently, any

clustering algorithm for this task needs to have as an input the within-cluster precision of

similarity, outside of which articles are not considered to be part of the same cluster.

Hierarchical clustering is a clustering algorithm that places all samples and

resultant clusters into a hierarchy based on their distances to one another. There are two

approaches to hierarchical clustering, divisive and agglomerative. Divisive hierarchical

clustering algorithms start with a single cluster containing all of the samples and proceed

through a series of splits until each sample is in its own cluster. On the other hand,

agglomerative hierarchical clustering algorithms start by assigning each sample to a

different cluster and then, through a series of cluster joins, constructs a hierarchy ending

with all samples in a single cluster.

An explicit assumption of hierarchical clustering algorithms is that all samples

have some relationship with each other and thus can be placed into a single tree. For

example, the scientific consensus is that all forms on life on earth descended from a single

ancestor. Recall that the hierarchy in the classic Linnaean taxonomy is, from top to

bottom, domain, kingdom, phylum, class, order, family, genus, and species. There are

48

three main domains of life–Archaea, Bacteria, and Eukarya–in the Woese system of the

tree of life (Woese, Kandler, & Wheelis, 1990). If you were to consider that these three

domains all are part of the “life” supercluster, then a hierarchical clustering algorithm is a

good way to determine how the domains, families, species, and all the myriad forms of

life are related to one another. If the problem presented to us is to identify clusters that

represent the families in the taxonomies then there needs to be a cut-off point, below

which there are only families and above which there are no connections between families.

Identifying this exact point below which there is a cluster and above which there is not is a

difficult problem in hierarchical clustering and will be further explored after first

explaining the basic HAC algorithm.

An implementation of the HAC Algorithm

The high-level algorithmic steps needed to perform HAC on M samples, each of N

dimensions, are show in Figure 4.8:

1. Transform each of M samples into an N-dimensional vector.

2. Create M clusters, each containing a single N-dimensional vector.

3. Compute the distance between each cluster using a distance metric.

4. Take the two clusters which have the least distance between them and join

them into a new cluster.

5. Remove the two clusters from step 4 from the list of clusters.

6. If there’s only a single cluster remaining, exit the algorithm.

7. Jump to step 3.

Figure 4.8: Outline of the hierarchical agglomerative clustering algorithm

49

Figure 4.9 is an example of the algorithm from Figureal 4.8 using a 2D dataset

constructed to have three different clusters. The dataset used to create Figure 4.9 is shown

in Table 4.4:

Index X Y Cluster

0 11.9 4.4 1

1 10.5 2.3 1

2 11.2 4.4 1

3 10.0 3.9 1

4 11.7 6.6 1

5 2.3 21.3 2

6 3.9 19.7 2

7 4.4 19.7 2

8 2.5 17.4 2

9 1.4 19.1 2

10 16.0 11.5 3

11 14.0 10.4 3

12 13.4 10.7 3

13 13.6 11.1 3

14 14.1 11.1 3

Table 4.4: X and Y coordinates generating three small clusters used for Figure 4.9

50

Figure 4.9: Three small clusters scattered in the XY coordinate system

Assuming that the dataset above is loaded into a numpy 15-by-2 matrix X with

each row representing a cluster, the next task is to perform the clustering. Listing 5 on

page 52 demonstrates one possible implementation.

51

def hac(X, mean_fn=mean, dist_fn=euclidean_dist):
"""Perform hierarchical agglomerative clustering.

inputs:
X - an M-by-2 ndarray
mean_fn - a function used to calculate the mean between two

clusters
distance_fn - a function used to calculate the distance

between two clusters

returns:
X - an M+(M - 1)-by-4 ndarray. The additional M+1 rows

capture the the joins (column 3) and the distance between
clusters used for the joins (column 4)

merges - a list of lists in the format 'a b c' where a
is the index of cluster 1, b the index of cluster 2, and
c the index of the new cluster they form when merged.

"""

CLUSTER_IDX, DIST_IDX = 2, 3
X = np.append(X, np.zeros(X.shape), axis=1)
mask = np.ones(len(X), dtype=bool)
merges = []

while len(X[mask]) > 1: # Step 6
new_cluster_idx = len(X)

d_mat = dist_fn(X[mask][:,:2]) # Step 3
min_d = [*np.unravel_index(np.nanargmin(d_mat), d_mat.shape)]
shifts = [shift(mask, min_d[0]), shift(mask, min_d[1])]
X = np.append(X, [mean_fn(X[shifts])], axis=0) # Step 4
mask[shifts] = False # Step 5

X[shifts, DIST_IDX] = np.full(2, d_mat[min_d[0]][min_d[1]])
X[shifts, CLUSTER_IDX] = new_cluster_idx
mask = np.append(mask, [True])
merges.append(shifts + [new_cluster_idx])

return X, merges

Listing 5: Function that performs HAC

52

Since the mask array is used to mask off rows that have already been processed

from being input to the distance matrix creation, the shift function shown in Listing 6 is

needed to recover the indices in the original matrix X:

def shift(mask, idx):
"""Using the mask, recovers the original index value
from the unmasked array.

inputs:
mask - a bool array
idx - the index to adjust

returns:
the adjusted index

"""
left = idx
for m in mask:

if not m:
idx += 1
continue

if left == 0:
return idx

left -= 1

Listing 6: An implementation of the shift function

A mean_fn can be passed as a parameter to the hac function so that the caller can

specify which type of linkage algorithm to use. For example, in calculating the distance

between two clusters, each with multiple samples, the cluster-to-cluster distance can be

calculated from those samples nearest to each other, furthest from each other, or the

average of all samples. Likewise, a reference to a distance metric function can be passed

as the dist_fn argument so the caller can specify which type of pairwise distance metric,

such as the Manhattan or Euclidean distance metrics, to use.

53

Listing 7 is an implementation of the default Euclidean distance metric:

def euclidean_dist(X):
"""Calculates the euclidean distance between each point.

inputs:
X - an M-by-2 matrix

returns:
an M-by-M distance matrix with the upper-right
triangle filled in with pairwise distances. The lower
triangle and the identity diagonal are filled with
np.nan.

"""
dim = len(X)
dist_mat = np.full((dim, dim), np.nan)

for i in range(dim):
for j in range(i + 1, dim):

dist_mat[i, j] = np.linalg.norm(X[i,] - X[j,])
return dist_mat

Listing 7: A function for calculating the Euclidean distance between two vectors

While this is the basic outline of the algorithm, SciPy’s

scipy.cluster.hierarchy package provides optimized routines that are written for and

compiled with Cython, an optimizing static compiler for Python that improves Python

performance when c-type declarations are added to Python source and also makes calling

C and C++ libraries with Python trivial. For example, one capability that the package

provides is drawing dendrograms. Figure 4.10 is a visualization of the three small clusters

as a dendrogram:

54

Figure 4.10: Dendrogram produced by hierarchical agglomerative clustering. Note that the

green nodes correspond to cluster 2, the red nodes to cluster 3, and the teal nodes to cluster

1 in Table 4.4.

Determining the number of clusters: the inconsistency method

As alluded to in the introduction to hierarchical clustering, finding the cutoff point

in hierarchical clustering that chops off the root of the tree and asserts that the model

predicts there are a certain number of distinct clusters in the population is difficult (Hees,

2015). There are two methods that can be used to try to determine the number of clusters

when using HAC: the inconsistency method and the elbow method. The inconsistency

method uses the height of a merge h, the average height of merges under the merge avg,

and the standard deviation of the merge heights under the merge std in the following

equation to determine an inconsistency metric:

inconsistency =
h− avg

std

55

The higher the inconsistency value of a cluster the more dissimilar its contents are,

indicating perhaps that its contents are actually different clusters. SciPy provides an

implementation of the inconsistency function that requires a depth specification as input.

This is used for calculating the avg and std values. The

scipy.cluster.hierarchy.inconsistent function has two parameters, the linkage

matrix Z created by one of the many linkage family of functions in

scipy.cluster.hierarchy and a depth d, with a default value of 2. When executed on

the input data from Table 4.4, the inconsistency values computed for all the merges are

show in Table 4.5 (from root to leaves).

Avg Std # Links Inconsistency
8.69 6.5 3 1.08
4.26 2.75 3 1.15
2.58 0.63 2 0.71
2.47 0.45 3 1.02
1.48 1.38 2 0.71
1.54 1.14 2 0.71
1.89 0.36 2 0.71
2.02 0 1 0
1.17 0.66 2 0.71
0.69 0.05 2 0.71
0.7 0 1 0
0.55 0.15 2 0.71
0.5 0 1 0
0.45 0 1 0

Table 4.5: Intra-cluster inconsistency of three small clusters

The challenge is in determining the correct inconsistency value to split at. Looking

at the data above, one might say that a value of 1 looks like it could be a good place to

split the results. Unfortunately, doing so would result in four clusters, not the correct value

of three clusters. The root cause of the problem is that the samples have different

variances within their clusters. Some clusters have their samples distributed more densely

than others, such as the rightmost cluster compared to the top-left cluster in Figure 4.9.

Moreover, the inconsistency metric varies with the data its used on, so automatically

56

determining an inconsistency value to split at is a bit of guess-and-check and I do not

attempt to employ this method while clustering the news articles.

Determining the number of clusters: the elbow method

The elbow method is the second method that can be used to automatically

determine the distinct clusters in a hierarchical clustering. The idea behind the elbow

method is to find the point in the hierarchical clustering at which the change in the

distance between neighbor points increases most rapidly. In other words, the elbow

method uses the global maximum of the second derivative of the merge distances as the

number of clusters.

Figure 4.11: Acceleration used by the elbow method to determine number of clusters

Figure 4.11 shows that for our input data the rate of change of the distances

increases most rapidly at 3, which also happens to be the number of pre-determined

clusters this example was created with. In this case, the elbow method is able to accurately

infer the correct cluster count—but in many cases it cannot. Having a similar weakness

with the inconsistency method, the elbow method does not perform well when different

clusters have different intracluster variance (Hees, 2015). Additionally, by nature of its

57

design, the elbow method is not able to identify cases where there is actually only a single

cluster. For these reasons, as well as the fact that hierarchical clustering is not designed to

account for noise, the web application does not use hierarchical clustering to cluster news

articles.

4.4.2 DBSCAN

DBSCAN is a clustering algorithm that can discover clusters of arbitrary shape.

According to Ester, Kriegel, Sander, Xu, et al. (1996), DBSCAN has improvements over

the then state-of-the-art density-based clustering algorithm, CLARANS. It works

particularly well when precise knowledge of what data will be clustered is lacking, which

is an apt description of clustering news articles because news topics are continuously

changing.

The theory behind DBSCAN is intuitive. Imagine the samples to cluster each to

have N-features, meaning they can be charted in N-dimensional space. Using a distance

metric, it’s possible to measure the distance between any two points. Then, define a

particular distance, epsilon, that denotes the outer boundary of one point’s neighborhood.

Select any point as a starting point. All other points that are within that point’s

neighborhood are its neighbors. If the number of neighbors exceeds a predefined

threshold, that point is a “core” point. All points in the neighborhood of a core point are in

the same cluster. By then iteratively applying this algorithm to points in a core point’s

neighborhood, the cluster will expand until it reaches its edge. The algorithm’s name

perfectly describes its driving concept of tracking the density of points through space.

Points in neighborhoods that aren’t dense enough are marked as noise.

Distance Metrics

As alluded to above, a proper implementation of the DBSCAN algorithm allows a

caller to specify one of a number of different distance metrics. Below, I briefly cover the

58

Manhattan/city block, Euclidean, Minkowski and cosine distance metrics. The Manhattan

or city block distance metric gets its name from the observation that, when moving around

in a city, the distance between any two points is very rarely the “as the crow flies”

distance. When looking at a map of a North/South oriented grid-based city from a bird’s

eye view, the distance that it takes for someone walking that grid to travel on the streets

from one point to another is the difference in the longitudinal distance added to the

difference in latitudinal distance. In a Cartesian coordinate system, this is:

L1 = |x1 − x2|+ |y1 − y2|

This distance metric generalizes to higher dimensions N, where the distance

between any two vectors a and b is:

L1 =
N∑
k=1

|ak − bk|

This distance metric is often used when computing the distance a wire run in

integrated circuits because they often only runs parallel to the X or Y axes (Black, 2006).

It is also an appropriate distance metric when calculating the distance from the square a

rook’s currently occupies to any other square on a chessboard. Of the many distance

metrics, this metric produces the greatest magnitude because it treats each dimension

independently and then sums all of the magnitudes up. In comparison, the Euclidean

distance, D, between two vectors is strictly not greater than the Manhattan distance. That

is:

Deuclidean <= Dmanhattan

The Euclidean distance between two points is the magnitude of the straight line

between them. In a two-dimensional coordinate system, the Euclidean distance between

two points x and y is:

59

L2 =
√

|x1 − x2|2 + |y1 − y2|2

Generalized on vectors a and b in a space with N dimensions, it is:

L2 =

√√√√ N∑
k=1

|ak − bk|2

The Minkowski distance metric is a generalization of the Manhattan and Euclidean

distance metrics. The Minkowski distance of order p between two vectors a and b in N

dimensional space is:

Lp = (
N∑
k=1

|ak − bk|p)1/p

In other words, the Minkowski distance of the first order is another way of

expressing the Manhattan distance and the Minkowski distance of the second order is an

alias for the Euclidean distance.

Cosine similarity is often used in NLP. Given two vectors a and b, cosine

similarity measures the size of the angle between the two vectors. If you were to envision

a Cartesian plane, if the first vector is the x-axis and the second-vector is also on the

x-axis, the angle between the two vectors would be 0 and cos(0) = 1. Thus a similarity of

1 means most similar. Two vectors that are orthogonal to each other–for example one that

is on the x-axis and one that is on the y-axis–have a cosine similarity of 0. Two vectors

that are opposite of each other–for example one pointing towards +x and the other

pointing towards -x–have a similarity of -1. More formally, cosine similarity between

vectors A and B is:

cos θ =
A · B

∥A∥2∥B∥2

For information retrieval tasks where the dimensions indicate term frequencies

60

there cannot be any dimensions of a vector who’s values are negative, therefore cosine

similarity in these cases is constrained to the range [0, 1]. Related to cosine similarity is a

distance metric knows as cosine distance, which is denoted as:

cosdistance = 1− cossimilarity

Any of the above distance metrics could be used with the DBSCAN algorithm. In

my implementation I have chosen to use the second order Minkowski distance metric, as

you’ll see in Listing 9 for the DBSCAN algorithm. This is because my implementation

already computes a unit vector using TF-IDF.

Term Frequency/Inverse Document Frequency

TF-IDF is a normalization procedure that can be applied to documents represented

as vectors of terms. It comes from the observation that terms appearing more frequently

indicate what a document’s about, yet those terms appearing in many documents carry less

unique meaning in any one document. For example, imagine our corpus has four

documents as shown in Table 4.6:

Doc # Words
1 the way that can be told
2 is not the true way
3 the names that can be named
4 are not the real names

Table 4.6: Corpus documents used to demonstrate TF-IDF

We can then create a vector with a dimensionality of the set of unique terms in the

corpus. In the example above, there are twelve unique terms (after stemming). Each

document can then be represented as a 12-dimensional vector, where the value in each

dimension is the number of times that the particular term occurs in the document. A

vector representation of each of the documents in shown in Table 4.7:

61

Term Doc 1 Doc 2 Doc 3 Doc 4

the 1 1 1 1

way 1 1 0 0

that 1 0 1 0

can 1 0 1 0

be 1 0 1 0

told 1 0 0 0

is 0 1 0 1

not 0 1 0 1

true 0 1 0 0

name 0 0 1 1

be 1 0 1 0

real 0 0 0 1

Table 4.7: Term frequency vectors used in TF-IDF calculations

The term “real” is significant because it appears is only one document. If someone

were to search for “real,” for example, the highest-ranked result would be Doc 4. On the

other hand, the term “the” in the documents is meaningless because every document has it

in exactly the same frequency. If C be the number of documents in the corpus, and Cx the

number of documents in the corpus that contain a particular term, then the TF-IDF

calculations is determined as follows:

TF (x) = log10 x+ 1

IDF (x) = log10 C/Cx

62

Then, for every term in every document, replace its term count with v:

v =
TF (x)

IDF (x)
for IDF (x) > 0

v = 0 for IDF (x) = 0

These formulas encapsulate the fact that, (a) if a term is in every document it

carries no meaning and, (b) that the number of occurrences of a term is a document

increases that terms importance logarithmically, not linearly. Now that distance metrics

and TF-IDF have been covered, you’ll see applications of both concepts in the DBSCAN

implementation in Listing 8 on page 65.

63

An implementation of the DBSCAN algorithm

The DBSCAN algorithm’s steps are summarized in Figure 4.12:

1. Compute the distance between every sample.

2. For each sample, find all its neighbors.

3. Mark all samples whose neighborhood contains more than a minimum num-

ber of neighbors as “core.”

4. Loop over all samples. Continue until finding a core point. If no more core

points, exit.

5. Assign the core point to the current cluster. Perform a depth-first search on

the samples in its neighborhood. Add all neighbors to a stack.

6. For each sample in the stack, determine if it is a core sample. If it is, go to

step 4. If not, assign the sample to the current cluster.

7. When the stack is empty, go to step 3 and continue with the next sample.

Figure 4.12: An outline of the steps in the DBSCAN algorithm

64

This algorithm is implemented in Python starting with Listing 8:

def dbscan(X, eps, min_samples):
"""Runs DBSCAN with the given radius and number of samples
in circle.

Runs Density-Based Spatial Clustering of Applications with
Noise, using a brute-force neighbors search algorithm.

inputs:
X - an array of shape (m, n) containing m samples and
n features.

eps - the radius within which to check for neighbors.

min_samples - the number of samples that must be found
within eps in order to consider a sample point to be a
core point and within a cluster.

outputs:
is_core - an array of shape (m) that indicates whether
each sample is a core in a cluster.

labels - an array of shape (m) corresponding to X
indicating what cluster a sample is in. If a sample
is found to be noise, its label is -1.

"""

construct m-by-m distance matrix
d_mat = pdist(X)

find neighbors of each sample i
neighbors = find_neighbors(d_mat, eps)

label the clusters using Depth-First Search
is_core, labels = label_dbscan(neighbors, min_samples)

return is_core, labels

Listing 8: The top-level DBSCAN function

65

The pdist function declared in the distance module is defined as:

def pdist(X, dist_fn=minkowski_dist, p=2):
"""Constructs a pairwise distance matrix.

inputs:
X - a standardized array of shape (m, n), with m samples
and n features.

outputs:
an array of shape (m, m) with element X[i, j] filled with
the distance between m[i] and m[j].

"""
d_mat = np.zeros((X.shape[0], X.shape[0]))
for i, j in product(range(d_mat.shape[0]), range(d_mat.shape[0])):

d_mat[i][j] = dist_fn(X[i], X[j], p)

return d_mat

Listing 9: Function for calculating the pairwise distance

And lastly, the generalized distance function is demonstrated in Listing 10:

def minkowski_dist(x, y, p):
"""Calculates the Minkowski distance between two points x and y

The Minkowski distance is defined as sum(|x - y|^p)^(1/p).
When p = 1, the Minkowski distance is the same as the Manhattan
distance. When p = 2, the Minkowski distance is the same as the
Euclidean distance.

Inputs:
x, y - the two points to calculate the distance between.
p - the p-norm

Returns:
The distance as a float

"""
exp = p if p >= 0 else float(p)
return np.sum(np.absolute(x - y) ** exp) ** (1 / exp)

Listing 10: Function for calculating the minkowski distance

As you can see, the pdist function creates an m-by-m redundant distance matrix.

The matrix is considered redundant because the value at (m, n) is mirrored at (n, m). The

pdist function defaults to using the Minkowski distance metric with p=2. This function

66

can be improved to use only half of the memory space using a flat, non-redundant, data

structure. This is actually an option that SciPy’s implementation of its pdist function

provides. Another possibility is to use ball trees or kd-trees to determine the neighborhood

of points instead of constructing distance matrices. This avoids the calculation of the full m

by m distance matrix. The choice between calculating the full distance matrix or using a

kd-tree should depend on the size of the input. Currently scikit-learn defaults to using

kd-trees unless instructed otherwise (Pedregosa et al., 2011).

To improve performance, SciPy has also implemented the pdist function in native

C code. Rather than crossing the interpreted/native boundary every time the distance

function is executed, a pointer to a list of the samples is passed to the C code and a pointer

to the filled condensed distance matrix is returned. Additionally, SciPy’s C version takes

advantage of parallel execution when possible, whereas the Python version in Listing 9

will not. Consequently, SciPy’s C version is at least an order of magnitude faster than the

pure Python version above.

Next, Listing 11 demonstrates how the neighbors of each point are found:

def find_neighbors(distance_matrix, eps):
"""Finds all neighbors within eps radius of each sample in the
distance matrix.

inputs:
distance_matrix - a distance matrix of shape (m, m). The
upper-right triangle must be filled in, at a minimum.

eps - epsilon, the value that two samples must be less than
or equal to to be categorized as a neighbor.

outputs:
An array of shape (m), where each element i in the array is
an array of the neighbors of X[i]

"""
lst = [np.flatnonzero(row <= eps) for row in distance_matrix]
return np.array(lst)

Listing 11: Function that finds the neighbors of a node

The np.flatnonzero() function returns the indices of all elements in a row of the

67

distance matrix that are closer than or equal to eps, which is the maximum distance a

sample can be to still be considered a neighbor. Finally, Listing 12 clusters the points:

def label_dbscan(neighbors, min_density):
"""Labels clusters and noise.

inputs:
neighbors - An array of shape (m), where each element i
in the array is an array of the neighbors of X[i]

min_density - The number of neighbors a sample must have
to be considered a core sample.

output:
An array of size (m) of labeled clusters corresponding to
which cluster neighbors[i] is in. If neighbors[i] is
noise, the output for that row is set to -1.
"""

initialize is_core array to m[i]'s neighbors >= min_samples
and labels array to -1
is_core = np.array([len(el) >= min_density for el in neighbors]) #1
labels = -np.ones_like(is_core, dtype=int) #2

lifo = [] #3
label = 0

for i in range(len(neighbors)): #4

if labels[i] != -1 or not is_core[i]:
continue

while True:

if labels[i] == -1:
labels[i] = label #5
if is_core[i]:

lifo.extend(neighbor for neighbor in neighbors[i]
if labels[neighbor] == -1) #6

if len(lifo) == 0: #7
break

i = lifo.pop() #8

label += 1

return is_core, labels

Listing 12: Function that tags each sample as belonging to a cluster

68

The numbers in the comments to the right of the code in Listing 12 are further

explained in Figure 4.13:

1. An boolean array is initialized. The length of the array is the same as the

number of samples being clustered. If sample i has at least min_density

neighbors, then index i in the array is True.

2. An int array the same size as the is_core array is initialized with -1s, indi-

cating that no samples have yet been assigned to a cluster.

3. A LIFO is used in the depth-first search that identifies all samples in a radius

with at least a given density.

4. Each sample is visited at least once.

5. If the sample is a core sample but hasn’t yet been given a cluster label, then

use the current cluster label for that new cluster.

6. Add all of the core cluster’s neighbors to the LIFO.

7. If the LIFO is empty, jump to #4 and process the next sample.

8. Process the items in the LIFO until there are none left.

Figure 4.13: Explanation of the find_neighbors function

To demonstrate how this function performs, I implemented a demo that clusters a

few hundred samples. Each sample has two features and thus can be graphed onto the

Cartesian plane. Euclidean distance is used as the distance metric. The demo

demonstrates how varying the two inputs to the dbscan function, eps (radius) and

min_samples, affects the clustering. In Figure 4.14, eps is incrementally increased from

0.2 to 0.65 while min_samples remains constant at 25. Noise points are denoted by being

black. As eps grows, DBSCAN goes from not identifying any clusters to annotating all of

69

the points as belonging to a single cluster. When eps is 0.3, the algorithm identifies three

separate clusters while still leaving much of the samples on the boundaries as noise.

If, on the other hand, eps remains constant at 0.3 and the number of samples

within a 0.3 radius needed to constitute a cluster (min_samples) is varied, the opposite

effect occurs. Large, inclusive clusters are slowly reduced to small, dense clusters, to the

point that the algorithm doesn’t identify any clusters at all. This is shown in Figure 4.15.

eps and min_samples are really two sides of the same coin, as together they

determine density. A refinement of the DBSCAN algorithm as implemented in Listing 8

on page 65 would normalize the input data and ask for a single input, density.

4.4.3 The Python STL’s LRU Cache Algorithm

A cache is used as a proxy for some computation to prevent an expensive

operation from occurring if that expensive operation has already been performed in the

past. By using the cache as a proxy, the cache might be able to return the result directly if

it had stored the result of the previous computation, thereby bypassing the slow operation.

An LRU cache is a cache that is optimized for both time and space. It maintains a list of

its elements ordered by last-accessed time and, when full, ejects elements that have been

last-accessed the longest time ago. This cache replacement policy is best applied with

access patterns that exhibit locality of time and space, i.e., where the statement that

elements or addresses accessed most recently are those most likely to be accessed again

soon is true.

There are many alternative cache replacement policies. For example, there’s the

most-frequently-used (MFU) cache replacement policy, which orders its element by

access time the same way that an LRU cache does, but rather than ejecting an element that

was used the furthest in the past it ejects the element that was last accessed. While

counter-intuitive, according to Chou and DeWitt (1986) in certain situations the MFU

cache replacement policy performs pretty well.

70

Figure 4.14: Varying the eps parameter of Density-Based Spatial Clustering of Applications
with Noise

71

Figure 4.15: Varying the minimum number neighbors constituting a cluster in Density-
Based Spatial Clustering of Applications with Noise

72

Another alternative to the standard LRU is a time-based LRU, which adds a

timestamp as an input to the ejection-selection function. More concretely, an item in the

cache has a time-to-live (TTL). When an element’s TTL is exceeded, the entry is no

longer be considered valid in the cache and may either be ejected or recomputed. There’s

also the least-frequently-used (LFU) replacement policy, which counts the number of

times an element in the cache has been accessed and replaces the element that has been

accessed the least number of times.

The article service uses Google Translate to translate Chinese and English text into

different languages. Google Translate’s pricing is based on the number of characters

translated, so the cost function to minimize is the number of characters translated. Making

the call over the public internet is also slow, and Google rate-limits the number of

characters that can be translated per minute. I ran into both of these issues while

developing the article service.

Intuitively, one expects that a word used in a news article is likely to be repeated

later in that news article and perhaps even within other news articles from the same date.

As time passes, the topics covered in news articles change and words associated with old

topics no longer serve much of a purpose in a cache. Under these assumptions, a LRU

cache replacement policy for translations from the Google Translate API is an appropriate

application of a LRU cache. Luckily, the STL supplies a LRU cache implementation.

What follows is an explanation of the LRU algorithm and how it is implemented in the

STL.

An implementation of an LRU cache

A software-defined LRU algorithm needs a mapping data structure, such as a

hash-map, and a circular doubly-linked list. The mapping data structure holds the

elements currently in the cache, and the doubly- linked list contains the bookkeeping of

the order that elements in the cache have last been accessed. Each node in the

73

doubly-linked list has three members: a link to the previous node, a link to the next node,

and a key to the mapping, which can be empty. Only one node in the doubly-linked list

can have its key member empty, because an empty key indicates the root of the

doubly-linked list. The doubly-linked list is operated as a queue. Conceptually, elements

at the rear of the queue are ejected when the queue is full and new elements are added to

the front of the queue. Elements accessed when they are in the cache are moved to the

front of the queue. The root element provides access to the front and rear of the queue

through its previous and next links. Rather than allocating a new linked-list node when an

element not in the cache is accessed and freeing the old nodes, an optimization taken by

the STL is to rotate the root around the circular linked-list to the ejected element and reuse

the old root’s node. In such a way the doubly-linked list, once fully-allocated, never

allocates or frees any additional memory.

To demonstrate the usage of the bookkeeping circular doubly-linked list, below is

a example run of a LRU cache with four spaces and an access pattern of 1, 2, 3, 4, 3, 5, 1.

Figure 4.16 shows the first step, where the linked list is first initialized. The root

element’s key is empty (0) and its previous and next links point to itself.

74

Figure 4.16: Initializing a doubly-linked list for bookkeeping in the LRU cache. Note the

legend, subsequent figures omit this legend to save space.

When element 1 is accessed there’s a check to determine whether the cache is full

and, since it’s not, the new element is added into the linked list. Its next and previous links

point to the root, and the root’s next and previous links point to it. The “next” link from

the root is the element in the list that has been most-recently accessed, and the “previous”

link is the element that has been least-recently accessed and will be replaced when space

in the cache is needed.

75

Figure 4.17: Element 1 is accessed

The same thing happens as elements 2, 3, and 4 are accessed:

Figure 4.18: Elements 2, 3, and 4 are accessed

At this point, element 3 is accessed again. Since the element is already in the

cache, its cached value is returned. The links in the linked list are updated so that the

root’s next element is now element 3 and its previous link still points to element 1.

76

Figure 4.19: Element 3 is accessed again

When element 5 is accessed it’s not in the cache and there’s no room in the cache

to add new elements. Consequently, the least-recently-used element will be ejected. Since

the algorithm uses a circular doubly-linked list, this can be achieved by simply moving the

root to its “previous” link and replacing the space where the root was with the element that

was just accessed—in this case, element 5.

Figure 4.20: Element 5 is accessed and replaces the root

Finally, element 1 is accessed. Again, it’s not in the cache so the root is pushed

forward one space and the old root’s key is set to element 1.

77

Figure 4.21: Element 1 is accessed and replaces the root

This particular approach to a software-defined LRU cache was implemented first

in the STL with Python release 3.2, published on February 20, 2011, as a pure-Python

decorator in the functools module. It was then subsequently improved upon in Python

3.3 and a faster C implementation was included in the 3.5 release, which Storchaka (2012)

reported achieved an execution speedup on the order of 25x. Both the pure Python and C

implementations used the same circular doubly-linked list approach shown above. Since

caching is a generic concept that could be applied to many different use cases, the

developers who wrote it chose to implement the lru_cache as a Python decorator, giving

it the ability to decorate any particular function.

Python decorators are syntactic sugar that are particularly helpful for certain use

cases. Not to be confused with the object-oriented decorator design pattern, which

decorates or wraps an object at runtime with additional or overridden behavior, Python

decorators serve the purpose of adding cross-cutting functionality to a function or class at

the point where it is defined. Pragmatically, a decorator wraps a function with code that

will be executed before and/or after the function is called. The lru_cache is a great

example of a decorator that can be applied to many different functions. It is easy to

imagine needing a cache for database queries, HTTP API calls, or a recursive

78

implementation of the Fibonacci sequence. Further information on decorators and the

functools.lru_cache decorator’s pure Python implementation can be seen in

“Glossary” (Python Software Foundation, 2017) and the source code in the STL’s

functools.py (Hettinger et al., 2017).

79

Chapter 5

Results and Observations

The best clusters are made from nouns

A few surprising results arose through the process of designing and implementing

this cross-language article clustering application. First, determining similarity between

news articles based on their nouns alone provided the best clusters. This was not what I

expected. I had expected that, given that one word in the source language can often be

translated into many words in the target language, the probability that it would be

translated to the corresponding word used in the target language would be low. For

example, I anticipated that the Chinese word for car (汽⻋) might be translated as auto or

automobile and thus not match English articles that used the word car. I reasoned that to

account for these discrepancies, the best thing to do would be to expand every word in

each article by all other words that carry the same meaning (their synsets). When put into

practice, synset expansion noticeably degraded clustering performance and actually

created subjectively worse clusters.

There are two possible reasons why synset expansion did not improve article

clustering. The first is that the translation system employed, Google Translate, provides

the most-probable translation for a particular word. A part of determining which

translation is most probable is how frequently the proposed translation is used in the target

80

language. While the most-probable translation of a word in some cases may not match the

word used in English articles about the same topic, on average it chooses the right

translation frequently enough. Words rarely appear alone in a document, which is one of

the key insights driving LSA, so while one word may be translated incorrectly for a

particular context, it’s likely that the words around it won’t be.

A second possible reason why synset expansion is unnecessary is that nouns are

less ambiguous than other parts of speech in Chinese. This statement must be qualified

because the parts of speech themselves in Chinese are themselves often ambiguous. In

Chinese, the same word can be used as a noun or a verb. This is not completely foreign to

English (We google things on Google), but it’s a core feature of the Chinese language.

Kwong and Tsou (2003) provides the example of怀疑, which can be an adjective

(suspicious), a verb (to suspect), or a noun (suspicion). Yet, if the part of speech is

identified correctly, the space of possible translations is made much smaller. Thus, much

of the burden of winnowing the search space of translations is pushed onto Stanford

CoreNLP, which is responsible for tagging each word an article with a part-of-speech.

Stanford CoreNLP seems to do a good job of tagging nouns in Chinese. Unfortunately,

Google Translate’s API does not allow one to specify which part of speech a translation

should fulfill, but when a word has multiple translations, Google Translate usually ranks

the noun first. This raises the possibility of using more appropriate machine translation

system that allows one to provide part-of-speech context to the software as input and falls

back to Google Translate for cases such as new words or named entities where Google

Translate performs remarkably well.

Most articles are distant in vector space

It was surprising to find both in hierarchical and density-based clustering

algorithms that the Euclidean distance between two even seemingly similar articles is

large. This is shown most clearly in Figure 5.1, a sample hierarchical clustering run:

81

Figure 5.1: Part of an example clustering from May 11-15, 2017. The unit-normalized

vectors are very distant from each other.

Figure 5.1 demonstrates that even articles written in the same language and that

share many, but not all, of the same paragraphs (“France’s First Lady, a Confidante and

Coach, May Break the Mold”) have a normalized distance of around 0.6 from each other.

Articles that are also very similar topically, such as the three on Fatima’s Sainthood, are

around 1.2 units from each other. This was an unexpected result, yet upon further

reflection it makes sense that the higher the dimensionality of the vector space, the easier

it is for two vectors to be further away from one another. This phenomenon occurred

when using the DBSCAN algorithm also, and through iterative fine-tuning I found that a

good eps to set as the intra-neighborhood distance for the algorithm is 1.3 units.

82

Performance bottlenecks can come from unexpected places

When developing the clustering algorithms, I knew that many of them are

computationally expensive in terms of space and time. Consequently, my implementations

of the clustering algorithms use numpy array-based operations where possible. This means

that rather than operating on individual elements in an array, as is typically in a for-loop in

a programming language, numpy operates on entire rows or even matrices at once. Many

of Numpy’s array-based operations are written in in a way using native C extensions that

optimizes parallel execution. This undoubtedly led to faster execution of the algorithms,

but my initial performance concerns remained with the clustering algorithms.

Yet unexpectedly, one of the main culprits elongating the execution time of the

web application turned out not to be the clustering algorithm itself but the retrieval of the

CoreNLP JSON objects stored in the database. There are two reasons why storing the

CoreNLP objects as JSON in the database negatively impacts performance: (a) each

object is large and, (b) each object must be deserialized into a Python dictionary before it

can be operated on. The average size of an object in the corenlp_json column of the

articles table is 187KB. If there are 100 articles to cluster for a given timespan, then

approximately 20MB of data must be transferred to the Django web app and deserialized

before the clustering can begin. In most scenarios where the database and web application

were separated by a network this amount of data transfer would prove untenable.

In the case of the web app, the story card page that users first see when visiting the

site performs a total of 11 queries. In Figure 5.2, the top row of the query profiling page in

the Django Debug Toolbar shows the single query that requests the actual JSON objects

takes over half of the total query time:

83

Figure 5.2: The query retrieving the corenlp_json column is by-and-far the most expen-

sive computationally

This is just for the transfer of the data to the Django application; the deserialization

of the JSON adds additional time. While spending 100s of milliseconds in the current

system is concerning, it is not yet a blocking performance issue. As additional news

sources are added and the number of articles to be clustered increases, it will undoubtedly

become one. This unexpected performance bottleneck will be taken care of in a future

iteration of the web application by modifying the database schema and token retrieval

algorithm. This change would entail creating a table for each of the different features of an

article, such as nouns and verbs, and populating them by the article service. Then, when

the web application requested all of the nouns, it would simply request all of the elements

of a table whose article_id corresponded to an article within a date range and return

84

rows of words. This will require much less data transfer and no JSON deserialization.

85

Chapter 6

Summary and Conclusions

To the best of my knowledge, the application developed in this thesis is currently

the only application on the internet today that clusters English and Chinese news articles.

This thesis’s impetus is the idea that it’s important for Americans to understand Chinese

perspectives and Chinese to understand American perspectives. It described how the news

media is one of the main arteries of national bias and hypothesized that providing a

platform that allows Americans to read Chinese news articles and vice versa can be a tool

to combat that bias. To that end, it explored how best to create an application that topically

clusters news articles across languages. It found that NLP techniques, such as

part-of-speech tagging, assisted greatly to identify which words from a news article should

be used as input to an unsupervised clustering algorithm. Experimentation found that

density-based clustering worked very well for news articles, as algorithms like DBSCAN

account for noise and there is a lot of noise in news topics. Hierarchical clustering

algorithms were explored but presented obstacles that made them less conducive to topical

clustering. An implementation of the web application portion of the thesis can be viewed

on the author’s website.1 The source code repository can be viewed online as well.2

If I were to start the thesis today, I would be very interested in looking into how
1http://www.plaintexttransmissions.org/news
2http://www.bitbucket.org/gusennan/clds-web

86

LSA could be used in lieu of document translation to determine document similarity. The

different language versions of Wikipedia with their cross-language links are rich

knowledgebases to mine. I would also design the database schema differently to avoid the

performance issue associated with retrieving large JSON objects, as noted in Chapter 5.

Lastly, the application is lacking objective measurements of its clustering quality. If I were

to start again today, I would first create a corpus of news articles in English and Chinese

and manually create clusters, thereby having a gold-standard to compare the output of

different clustering algorithms to. I would also add a feedback mechanism into the web

application that allows users to provide real-time feedback on the quality of clusters.

There is ample future work that this thesis could serve as a starting point for. First,

it would be very interesting to conduct user studies to determine whether or not using this

application promotes cross-cultural understanding. Second, the techniques used in this

thesis are by no means limited to the English and Chinese languages, future work could

add additional languages to the application. Third, as noted above, it would be particularly

interesting to devise a document similarity metric absent foreign language translation. As

the source code for this thesis is available online, if anyone is so inspired to pursue this

path of inquiry, the process of replacing the functions that determine document similarity

should not be too difficult to implement.

87

References

Bird, S., Loper, E., & Klein, E. (2009). Natural language processing with python.

O’Reilly Media Inc.

Black, P. E. (2006). Manhattan distance. In V. Pieterse & P. E. Black (Eds.), Dictionary of

Algorithms and Data Structures. Retrieved from

https://xlinux.nist.gov/dads/HTML/manhattanDistance.html

Brown, R. (2015). Django vs Flask vs Pyramid: Choosing a Python web framework. [Web

log comment]. Retrieved from

https://www.airpair.com/python/posts/django-flask-pyramid

Chou, H.-T. & DeWitt, D. J. (1986). An evaluation of buffer management strategies for

relational database systems. Algorithmica, 1(1-4), 311–336.

Django Debug Toolbar developers and contributors. (2017). Django Debug Toolbar.

(Version 1.7) [Software]. Available from

https://github.com/jazzband/django-debug-toolbar.

Django Software Foundation. (2017). Django. (Version 1.11.3) [Software]. Available from

https://djangoproject.com.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for

discovering clusters in large spatial databases with noise. In Kdd (Vol. 96, 34,

pp. 226–231).

Evans, D. (2005). Identifying similarity in text: Multi-lingual analysis for summarization

(Doctoral dissertation, Columbia University). Retrieved from

88

https://xlinux.nist.gov/dads/HTML/manhattanDistance.html
https://www.airpair.com/python/posts/django-flask-pyramid

http://search.proquest.com.ezp-

prod1.hul.harvard.edu/docview/305007245?accountid=11311

Evans, D., Klavans, J. L., & McKeown, K. R. (2004). Columbia newsblaster: Multilingual

news summarization on the web. In Demonstration Papers at HLT-NAACL 2004

(pp. 1–4). HLT-NAACL–Demonstrations ’04. Boston, Massachusetts: Association

for Computational Linguistics. Retrieved from

http://dl.acm.org/citation.cfm?id=1614025.1614026

Fingar, T. & Fan, J. (2013). Ties that bind: Strategic stability in the U.S.-China

relationship. The Washington Quarterly, 36:4, 125–138.

doi:10.1080/0163660X.2013.861718

Foreign Ministry of the People’s Republic of China. (2017, April 8). Introduction to the

Mar-a-Lago summit of the US and Chinese heads of state. Retrieved from

http://www.fmprc.gov.cn/web/ziliao_674904/zt_674979/dnzt_674981/xzxzt/

xjpdfljxgsfw_689445/zxxx_689447/t1452260.shtml

Fuxjäger, M. (2017). Postgresql. Retrieved August 20, 2017 from the Python Wiki:

https://wiki.python.org/moin/PostgreSQL.

Greenfeld, D. R. (2017). Cookiecutter Django. (Version 1.5.1) [Software]. Available from

https://github.com/pydanny/cookiecutter-django.

Greenfeld, D. R. & Greenfeld, A. R. (2015). Two scoops of Django: Best practices for

Django 1.8 (3rd ed.). Los Angeles, California: Two Scoops Press.

Gregorio, F. D. & Varrazzo, D. (2016). Frequently asked questions. Retrieved from

http://initd.org/psycopg/docs/faq.html

Hassan, S. & Mihalcea, R. (2009). Cross-lingual semantic relatedness using encyclopedic

knowledge. In Proceedings of the 2009 Conference on Empirical Methods in

Natural Language Processing: Volume 3 (pp. 1192–1201). EMNLP ’09. Singapore:

Association for Computational Linguistics. Retrieved from

http://dl.acm.org/citation.cfm?id=1699648.1699665

89

http://search.proquest.com.ezp-prod1.hul.harvard.edu/docview/305007245?accountid=11311
http://search.proquest.com.ezp-prod1.hul.harvard.edu/docview/305007245?accountid=11311
http://dl.acm.org/citation.cfm?id=1614025.1614026
https://dx.doi.org/10.1080/0163660X.2013.861718
http://www.fmprc.gov.cn/web/ziliao_674904/zt_674979/dnzt_674981/xzxzt/xjpdfljxgsfw_689445/zxxx_689447/t1452260.shtml
http://www.fmprc.gov.cn/web/ziliao_674904/zt_674979/dnzt_674981/xzxzt/xjpdfljxgsfw_689445/zxxx_689447/t1452260.shtml
http://initd.org/psycopg/docs/faq.html
http://dl.acm.org/citation.cfm?id=1699648.1699665

Hees, J. (2015). Scipy hierarchical clustering and dendrogram tutorial. Retrieved from

https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-

dendrogram-tutorial/

Hettinger, R., Storchaka, S., Coghlan, N., Peterson, B., Wouters, T., Brandl, G., …

Belopolsky, A. (2017). functools.py. [Online Git Repository]. Retrieved from

https://github.com/python/cpython/blob/

6f0eb93183519024cb360162bdd81b9faec97ba6/Lib/functools.py

Hipp, D. R. (2008). Appropriate uses for SQLite. Retrieved from

https://sqlite.org/whentouse.html

Hoffman, P., Graña, D., Olveyra, M., García, G., Cetrulo, M., Bogomyagkov, A., …

Ramírez, N. (2017). Scrapy. (Version 1.3.3) [Software]. Available from

https://scrapy.org/.

Hunter, J. (2007). Matplotlib: A 2D graphics environment. Computing in Science &

Engineering, 9(3), 90–95. doi:10.1109/MCSE.2007.55

Jones, E., Oliphant, T., Peterson, P., et al. (2001). Scipy: Open source scientific tools for

Python. Retrieved from http://www.scipy.org

Kwong, O. Y. & Tsou, B. K. (2003). A synchronous corpus-based study of verb-noun

fluidity in Chinese. In Proceedings of the 17th Pacific Asia Conference on

Language, Information and Computation (PACLIC 17) (pp. 194–203).

Lemburg, M.-A. (1999). Python database API specification v2.0 (Python Enhancement

Proposals No. 249). Retrieved from https://www.python.org/dev/peps/pep-0249/

Lönnberg, M. & Yregård, L. (2013). Large scale news article clustering (Master’s thesis,

Chalmers University of Technology, Gothenberg, Sweden).

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., & McClosky, D.

(2014). The Stanford CoreNLP natural language processing toolkit. In Association

for Computational Linguistics (ACL) System Demonstrations (pp. 55–60).

Retrieved from http://www.aclweb.org/anthology/P/P14/P14-5010

90

https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/
https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/
https://github.com/python/cpython/blob/6f0eb93183519024cb360162bdd81b9faec97ba6/Lib/functools.py
https://github.com/python/cpython/blob/6f0eb93183519024cb360162bdd81b9faec97ba6/Lib/functools.py
https://sqlite.org/whentouse.html
https://dx.doi.org/10.1109/MCSE.2007.55
http://www.scipy.org
https://www.python.org/dev/peps/pep-0249/
http://www.aclweb.org/anthology/P/P14/P14-5010

Martin, T. (2017, May 23). Dissecting trump’s most rabid online following.

FiveThirtyEight. Retrieved from

https://fivethirtyeight.com/features/dissecting-trumps-most-rabid-online-following/

McInne, L. (2017). Building and exploring a map of Reddit with Python. Retrieved from

https://lmcinnes.github.io/subreddit_mapping/

McKeown, K. R., Barzilay, R., Evans, D., Hatzivassiloglou, V., Klavans, J. L.,

Nenkova, A., … Sigelman, S. (2002). Tracking and summarizing news on a daily

basis with Columbia’s newsblaster. In Proceedings of the Second International

Conference on Human Language Technology Research (pp. 280–285). HLT ’02.

San Diego, California: Morgan Kaufmann Publishers Inc. Retrieved from

http://dl.acm.org/citation.cfm?id=1289189.1289212

McKeown, K., Barzilay, R., Chen, J., Elson, D., Evans, D., Klavans, J., … Sigelman, S.

(2003). Columbia’s newsblaster: New features and future directions. In Proceedings

of the 2003 Conference of the North American Chapter of the Association for

Computational Linguistics on Human Language Technology: Demonstrations -

Volume 4 (pp. 15–16). NAACL-Demonstrations ’03. Edmonton, Canada:

Association for Computational Linguistics. doi:10.3115/1073427.1073435

McKeown, K., Passonneau, R. J., Elson, D. K., Nenkova, A., & Hirschberg, J. (2005). Do

summaries help? In Proceedings of the 28th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (pp. 210–217).

SIGIR ’05. Salvador, Brazil: ACM. doi:10.1145/1076034.1076072

McKinney, W. (2010). Data structures for statistical computing in python. In S.

van der Walt & J. Millman (Eds.), Proceedings of the 9th python in science

conference (pp. 51–56).

Mitchell, R. (2015).Web scraping with python: Collecting data from the modern web.

O’Reilly Media, Inc.

91

https://fivethirtyeight.com/features/dissecting-trumps-most-rabid-online-following/
https://lmcinnes.github.io/subreddit_mapping/
http://dl.acm.org/citation.cfm?id=1289189.1289212
https://dx.doi.org/10.3115/1073427.1073435
https://dx.doi.org/10.1145/1076034.1076072

Munson, S. A., Lee, S. Y., & Resnick, P. (2013). Encouraging reading of diverse political

viewpoints with a browser widget. In ICWSM.

Park, S., Kang, S., Chung, S., & Song, J. (2009). Newscube: Delivering multiple aspects

of news to mitigate media bias. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (pp. 443–452). CHI ’09. Boston, MA, USA:

ACM. doi:10.1145/1518701.1518772

Pazzanese, C. (2017, June 1). The troubling U.S.-China face-off. Harvard Gazette.

Retrieved from http://news.harvard.edu/gazette/story/2017/06/new-book-evaluates-

the-u-s-china-face-off/

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., …

Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12, 2825–2830.

Python Software Foundation. (2017). Glossary. In Python 3.6.2 Documentation. Retrieved

from https://docs.python.org/3/glossary.html

Steinberger, R., Pouliquen, B., & Hagman, J. (2002). Cross-lingual document similarity

calculation using the multilingual thesaurus EUROVOC. Computational Linguistics

and Intelligent Text Processing, 101–121.

Storchaka, S. (2012). C implementation of functools.lru_cache. [Msg 177953]. Message

posted to https://bugs.python.org/msg177953.

The PostgreSQL Global Development Group. (2017). PostgreSQL. (Version 9.6.3)

[Software]. Available from https://www.postgresql.org/downloads.

Walt, S. v. d., Colbert, S. C., & Varoquaux, G. (2011). The numpy array: A structure for

efficient numerical computation. Computing in Science & Engineering, 13(2),

22–30.

Woese, C. R., Kandler, O., & Wheelis, M. L. (1990). Towards a natural system of

organisms: Proposal for the domains archaea, bacteria, and eucarya. Proceedings of

the National Academy of Sciences, 87(12), 4576–4579.

92

https://dx.doi.org/10.1145/1518701.1518772
http://news.harvard.edu/gazette/story/2017/06/new-book-evaluates-the-u-s-china-face-off/
http://news.harvard.edu/gazette/story/2017/06/new-book-evaluates-the-u-s-china-face-off/
https://docs.python.org/3/glossary.html

Glossary

API application programming interface.

AWS Amazon Web Services.

cron A software program, usually found on computers with Unix-like operating systems,

that allows one to schedule tasks to run on predetermined intervals. These tasks are

usually referred to as cron jobs.

DBSCAN Density-Based Spatial Clustering of Applications with Noise.

dendrogram A tree diagram, where each node in the tree has at most two children.

Frequently used to describe evolutionary relationships between species and results

of hierarchical clusterig algorithms.

Django Debug Toolbar A debug tool one can include in their Django-based website to

provide deeper insights into various aspects of Django’s processing of HTTP

requests and responses .

ESA explicit semantic analysis.

EU European Union.

GIL global interpreter lock.

Gunicorn Stands for “Green Unicorn”. A WSGI-compliant Python HTTP server.

93

HAC Hierarchical Agglomerative Clustering.

HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with Noise.

LFU least-frequently-used.

LRU least-recently used.

LSA Latent Semantic Analysis.

MFU most-frequently-used.

Nginx An open-source HTTP and reverse-proxy server.

NLP Natural Language Processing.

NLTK Natural Language Toolkit.

ORM object-relational mapper.

PostgreSQL An open-source relational database.

SAAS software-as-a-service.

selective exposure the process of filtering out messages that do no match our beliefs

because of political preference, or simply by selecting a certain information

medium.

Stanford CoreNLP An open-source toolkit maintained primarily by Stanford University

for extracting information from human languages.

STL Python Standard Library.

subreddit A discussion topic on the website Reddit. A subreddit can be open for public

viewing or comments or or limited to a particular restricted set of users.

94

synset a group of semantically equivalent words.

TF-IDF term frequency/inverse document frequency.

TTL time-to-live.

VM Virtual Machine.

WSGI Web Server Gateway Interface.

95

	List of Tables
	List of Figures
	Why Is This Application Necessary?
	Prior Work
	The Web Application
	Software Development Requirements
	The Target Audience
	Visual/Design Requirements
	Functional Requirements

	Users Guide

	Implementing Cross-Language News Article Clustering
	Architectural Overview
	The Article Service
	The Web Application
	The Database

	Technology Options and Choices
	For the Article Service
	CPython 3.6
	Stanford CoreNLP
	Scrapy
	Psycopg2
	Google APIs Python Client

	For the Web Application
	Numpy
	SciPy and scikit-learn
	Natural Language Toolkit
	Matplotlib
	Django Web Application Framework
	Gunicorn
	Nginx

	For the Database
	PostgreSQL database

	Profilers
	cProfile
	Django Debug Toolbar

	Implementation of Core Components
	The Data Model
	newssource
	article
	headline

	Python Access to the Database
	Scraping the Web for Articles
	Django as a Foundation

	Interesting Algorithms
	Hierarchical Clustering
	An implementation of the HAC Algorithm
	Determining the number of clusters: the inconsistency method
	Determining the number of clusters: the elbow method

	DBSCAN
	Distance Metrics
	Term Frequency/Inverse Document Frequency
	An implementation of the DBSCAN algorithm

	The Python STL's LRU Cache Algorithm
	An implementation of an LRU cache

	Results and Observations
	Summary and Conclusions
	References
	Glossary

