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Abstract 

Improving disease treatment relies on advancements in our understanding of 

disease etiology and evolution. Rational drug design seeks to exploit this understanding 

to improve human health through targeted molecular interventions. In this dissertation, 

we present computational methods that 1) predict disease evolution in the form of 

resistance mutations; and 2) generate de novo D-peptide therapeutics. First, we introduce 

the Resistor algorithm. Resistor uses Pareto optimization with multistate design and 

cancer-specific mutational probabilities to rank resistance mutations based on their ability 

to ablate binding to an inhibitor, retain native function, and occur in a specific cancer 

type. We apply Resistor to 8 inhibitors targeting the EGFR, BRAF, and ERK2 proteins, 

and provide experimental validation of Resistor-predicted resistance mutations. Second, 

we introduce DexDesign, a novel algorithm for computationally designing de novo 

D-peptide inhibitors. DexDesign leverages three novel techniques that are broadly 

applicable to computational protein design: the Minimum Flexible Set, K*-based 

Mutational Scan, and Inverse Alanine Scan. We apply these techniques and DexDesign to 

generate novel D-peptide inhibitors of two biomedically important PDZ domain targets: 

CALP and MAST2. Notably, the peptides we generated are predicted to bind their targets 

tighter than their targets' endogenous ligands, validating the peptides' potential as lead 

therapeutic candidates. We provide implementations of Resistor and DexDesign in the 

free and open source computational protein design software OSPREY. 
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1 Introduction 

Developing a new therapeutic takes an enormous amount of time and capital. One 

recent estimate1 has put the average cost of bringing a drug to market in 2022 at USD 

$2.3 billion. Clinical trial cycles require on average 7 years to complete, ranging from a 

low of about 4 years in infectious disease to about 12 years in oncology. Meanwhile, the 

internal rate of return (a proxy for R&D productivity; viz. the cost to develop a drug 

versus the expected sales of a drug once launched) has declined from 7% in 2014 to 1.2% 

in 2022. Such a decline is understandable considering the rising cost and time required to 

bring a drug to market. There exists no silver bullet that can reverse the trend, but there 

are many knobs pharmaceutical companies can turn to increase R&D efficiency. One 

such area includes improving the computational modeling of proteins and peptides. 

There is a rich history of applying computation and algorithms to biological 

phenomena. Entire fields of research, such as genomics, transcriptomics, metabolomics, 

and others, are predicated on the ability of computers to run algorithms efficiently to 

assist humans in the analysis and interpretation of experimental data. For example, the 

foundational construction of the human genome in 2001 was enabled by advances in 

whole-genome assembly algorithms2. Algorithms have since been developed for diverse 

biological applications such as predicting repair outcomes after CRISPR-Cas9 DNA 

cleavage3, optimizing mRNA, proteins, and peptides for stability and reduced 

immunogenicity4–9, docking small molecules and peptides to proteins10–12, among others. 

Notably, algorithmic breakthroughs in machine learning have recently provided an 

extraordinary solution to the 50-year-old grand challenge of predicting protein structure 

from primary sequence in the form of AlphaFold13,14. In short, algorithms that provide for 
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new or more accurate modeling capabilities have been one of the primary drivers of 

advances in biomedical fields over the past two decades. New and improved algorithms 

that have been applied to computational structure-based protein design (CSPD) are no 

exception.   

1.1 Computational structure-based protein design 

CSPD, in contrast to purely sequence-based protein design, incorporates 

experimental or theoretical models of a protein structure as its primary input. The 

theoretical basis for the incorporation of protein structures in algorithms is an outgrowth 

of the central dogma of molecular biology: that information flows forward from DNA to 

RNA to proteins, that a protein’s amino acid sequence determines its structure, and 

structure determines function15. While the notion that a protein adopts a single, static 

structure is a simplification16, it is the case that a protein’s most probable conformation at 

any point in time is that conformation which minimizes free energy15. The conformation 

that minimizes free energy is called the Global Minimum Energy Conformation (GMEC).  

The oversimplification noted above is better explained by statistical 

thermodynamics. Statistical thermodynamics teaches us that the GMEC is important, but 

that proteins adopt a (potentially infinite) number of conformations, and the probability 

of a protein being found in any one conformation c is proportional to that conformation’s 

energy: 

 𝑝(𝑐) ∝ exp (−
𝐸(𝑐)

𝑅𝑇
)  , (Equation 1) 
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where the energy of conformation c is denoted 𝐸(𝑐), 𝑅 is the ideal gas constant, and T is 

the absolute temperature. Since the sum of all conformations’ probabilities must equal 1, 

the probability of 𝑝(𝑐) is: 

 𝑝(𝑐) =
1

𝑄
exp (−

𝐸(𝑐)

𝑅𝑇
)  , (Equation 2) 

where Q, the canonical partition function and normalization factor, sums over all c in the 

set of conformations, C: 

 𝑄 = ∑ exp (−
𝐸(𝑐)

𝑅𝑇
)

𝑐∈𝐶

  . (Equation 3) 

In addition to being a normalization factor for computing the probability of a 

conformation, the partition function can be used to calculate additional properties of the 

molecular system, such as entropy and enthalpy16. CSPD algorithms that incorporate the 

notion of entropy, via the computation or approximation of partition functions, have been 

successfully applied to diverse protein design tasks, such as enzyme design17–21, peptide 

design22,23, design of inhibitors of protein-protein interactions24, design of non-classical 

antifolates25,26, prediction of resistance mutations27–31, protein optimization for 

immunogenicity and stability32, and design of broadly neutralizing antibodies33,34. The 

computation of provable approximations to the partition function is foundational to many 

of the protein design algorithms included in the protein design software developed in our 

lab, OSPREY35.  

1.2 OSPREY 

OSPREY (Open-Source Protein REdesign for You) is a free and open-source 

CSPD software suite developed by our lab at Duke University35. OSPREY includes many 
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CSPD algorithms applicable to predicting protein resistance mutations27–31, designing 

enzymes17–21, inhibitors22–24, and broadly neutralizing antibodies33,34, predicting 

GMECS36 and low-energy conformational ensembles17,21,24,37,38 for applications such as 

improving or ablating a target protein's binding to a protein24, peptide23,25, or small 

molecule28,30,31. The predictions its algorithms made have been validated in vitro19,21,24,30 

and in vivo33,34, both in retrospective24,28,35 and prospective24–26,30 scenarios. Key 

theoretical components that have contributed to OSPREY's algorithmic accuracy include 

1) provable methods, 2) conformational ensembles, 3) continuous motions. 

1.2.1 Provable algorithms 

Provable methods in CSPD algorithms stand in contrast to heuristic methods that 

sample a protein's conformational space and lack guarantees as to the accuracy of their 

predicted solutions. For example, if the protein design task is to find the GMEC of a 

thermodynamic ensemble, a provable algorithm is guaranteed to find the GMEC (with 

respect to the input model, viz. the inputs to the algorithm: the protein structure, 

conformational flexibility, energy function, sidechain rotational isomers (rotamers), etc.) 

whereas a heuristic, sampling-based algorithm is not. The natural question follows: why 

one would use an algorithm that lacked guarantees to the accuracy of its answer when 

provable methods exist? In practice, many protein designers accept an answer that is 

good enough, provided they receive it fast enough.  

Yet in our view this methodological choice brings with it several shortcomings 

that compound when applied to protein design. For one, all CSPD algorithms make 

necessary simplifications to its structural, thermodynamic, and energetic models to make 

the CSPD problem formulation tractable. Such simplifications include pairwise-
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decomposable energy functions, the use of discrete or continuous rotamers, implicit 

solvation, and limiting the regions of a protein that are flexible. Heuristic algorithms 

convolve these modeling simplifications with algorithmic inaccuracy. This makes it 

impossible to know when a solution turns out to be incorrect whether the cause was from 

inaccurate models or the algorithm itself. Perniciously, this precludes the protein designer 

from being able to identify and improve model shortcomings. These challenges increase 

as the protein design problem becomes larger, e.g., for the GMEC example, Simoncini et 

al. have shown39 that the probability of a widely used sampling-based algorithm correctly 

identifying the GMEC quickly approaches 0. 

Provable algorithms can guarantee the accuracy of their answers, but there is no 

free lunch. Finding the GMEC of a protein is NP-hard40,41, and computing low-energy 

thermodynamic ensembles and their associated partition functions is #P-hard42,43. 

Nevertheless, techniques such as dead-end elimination44, A* search45, and branch and 

bound algorithms37,38 implemented in OSPREY provide the protein designer with 

solutions and guarantees on accuracy that in practice run in reasonable amounts of time 

(Appendix A.4 provides examples of empirical OSPREY runtimes).  

1.2.2 Conformational ensembles and the K* algorithm 

Here, for the reader, we review the K* algorithm in the OSPREY protein design 

software suite35, which we have presented and analyzed in Lilien et al. (2005)21, Georgiev 

et al. (2008),17 Donald (2011),46 Gainza et al. (2012),47 Hallen et al. (2018),35 Ojewole et 

al. (2018) 38, and Jou et al. (2020)37. In brief, the K* algorithm computes a provably good 

ε-approximation to the binding affinity constant, Ka. For a proof that K* approximates 𝐾a 

see Appendix A of Lilien et al21. K* does so by calculating an ε-accurate partition 
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function for three structures: the bound protein:ligand complex (denoted 𝑃𝐿), the 

unbound protein (denoted 𝑃), and the unbound ligand (denoted 𝐿). Let 𝑋 be an arbitrary 

state, 𝑋 ∈ { 𝑃, 𝐿, 𝑃𝐿 }. The partition function is the sum of the Boltzmann-weighted 

energies for all the conformations in the thermodynamic ensemble of 𝑋. Let 𝑠 denote an 

arbitrary amino acid sequence, then the partition function of 𝑠 in state 𝑋 (which we 

donate as 𝑞𝑥(𝑠)) is: 

 𝑞𝑥(𝑠) = ∑ exp (−
𝐸(𝑐)

𝑅𝑇
)

𝑐∈𝑄𝑥(𝑠)

  , (Equation 4) 

where 𝑄𝑥(𝑠) is the entire conformational ensemble of sequence 𝑠 in state 𝑋, and 𝑐 is a 

single conformation from that ensemble. 𝐸(𝑐) is the energy of conformation 𝑐. 𝑅 is the 

ideal gas constant and 𝑇 is the temperature in absolute Kelvin. 

The K* score for a sequence 𝑠 approximates 𝐾𝑎: 

 𝐾∗(𝑠) =
𝑞𝑃𝐿(𝑠)

𝑞𝑃(𝑠)𝑞𝐿(𝑠)
   . (Equation 5) 

K* uses minimized continuous rotamers when computing 𝐸(𝑐), as described by 

the iMinDEE algorithm47. It uses the A* algorithm45,48 to search over 𝑄𝑋(𝑠) and streams 

a gap-free list of conformations in order of the lower-bound of a conformation's 

minimized energy47. It then minimizes the conformation to calculate 𝐸(𝑐), and generates 

an ε-approximation of the partition function 𝑞𝑋(𝑠) and the ensemble-complete K* value. 

This approximation is known as the K* score. 
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1.2.3 Continuous motions 

One common CSPD modeling simplification, used in both heuristic and provable 

methods, is the use of discrete backbone and sidechain conformations. The backbone is 

often set to be rigid, and the sidechains are restricted to a set of experimentally derived 

low-energy rotamers49. Georgiev et al. showed17 that constraining conformational search 

to discrete rotamers can elide favorable conformations that would be accessible if the 

sidechains were allowed to flex slightly from their modal rotameric conformations. 

The iMinDEE algorithm17 in OSPREY systematizes continuous rotameric 

conformational search by allowing the sidechain to minimize in a continuous space 

within a voxel centered on the modal rotamer. This energy-minimized conformation is 

then used to compute minimization-aware bounds for the dead-end elimination pruning. 

The DEEPer algorithm50 further loosened the discrete backbone paradigm to handle more 

extensive backbone flexibility and backbone ensembles. Additionally, recent versions of 

the K* family of algorithms implemented in OSPREY allow protein designers to specify 

that a ligand can translate and rotate.  

1.3 Outline of dissertation 

This dissertation describes novel approaches for computational structure-based 

protein design that provide new insights and capabilities to the drug-design process. 

Specifically, this dissertation presents novel algorithms for two important tasks in drug-

design: 1) the prospective prediction of a protein target's ability to develop resistance to a 

drug via escape mutations, and 2) the design of de-novo D-peptide inhibitors.  

Chapter 2 presents Resistor—a novel algorithm for predicting resistance 

mutations that may arise in a drug target. Resistor uses structure-based multistate design 
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to predict target mutations that ablate binding to an inhibitor while retaining native 

function with an endogenous ligand. It then uses Pareto optimization to combine these 

structure-based predictions with sequence-based cancer-specific mutational probabilities 

to rank prospective resistance mutations. By providing a ranked list of resistance 

mutations, a medicinal chemist could either proactively modify a drug candidate to make 

it less prone to resistance, or, in the case that a drug is already in use, anticipate resistance 

and begin developing the next generation drug that overcomes the resistance. Appendix 

A provides additional details on how we applied Resistor to predict resistance mutations 

in EGFR, BRAF, and ERK2. Appendix C is a step-by-step instruction manual for using 

the OSPREY35 implementation of the Resistor algorithm. 

Chapter 3 develops DexDesign, a novel computational protocol for designing de 

novo D-peptides. The use of L-peptides as therapeutics has a number of advantages, 

including standard protocols for synthesis, good efficacy, high potency, and 

selectivity51,52. But L-peptide therapeutics also have a number of drawbacks, including 

poor stability, oral bioavailibility, membrane permeability, and retention51. The 

incorporation of D-amino acids into peptides can obviate some of these drawbacks. For 

example, D-peptides can increase peptide stability by decreasing the substrate recognition 

by proteolytic enzymes53–56. 

One goal of DexDesign is to provide the medicinal chemist with a drug design 

algorithm that exploits the advantages of peptide therapeutics while minimizing the 

downsides. DexDesign does this by using the MASTER protein substructure search 

algorithm57 to identify D-peptides with backbones similar to existing L-peptide binders, 

and then uses OSPREY’s K* algorithm with a new D-sidechain library to optimize the 
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D-peptide’s binding to its target. We first describe the protocol, and then demonstrate 

applying DexDesign to two PDZ domain targets of biomedical importance: CALP and 

MAST2. Appendix B extends the discussion of the DexDesign algorithm and contains 

additional predictions and analyses of the complete set of DexDesign-generated de novo 

D-peptide inhibitors. 

1.4 Publications 

A large component of the content in this dissertation is adapted from published, 

peer reviewed original research. For example, the material presented in Chapter 2, 

Appendix A, and Appendix C are adapted from the previously published manuscripts: 

 

1. Guerin, N., Kaserer, T. & Donald, B. R. Resistor: An Algorithm for 

Predicting Resistance Mutations Using Pareto Optimization over Multistate 

Protein Design and Mutational Signatures. in (ed. Pe’er, I.) 13278, 387–389 

(Springer International Publishing, 2022). 

(This is the initial, abbreviated version I presented at the RECOMB 2022 

conference. The following three publications built upon and extended 

different aspects of the ideas we originally presented at RECOMB).  

  

2. Guerin, N., Feichtner, A., Stefan, E., Kaserer, T. & Donald, B. R. Resistor: 

an algorithm for predicting resistance mutations via Pareto optimization over 

multistate protein design and mutational signatures. Cell Systems 13, 830-

843.e3 (2022). 
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3. Guerin, N., Kaserer, T. & Donald, B. R. RESISTOR: A new OSPREY 

module to predict resistance mutations. Journal of Computational Biology 

(2022).  

 

4. Guerin, N., Kaserer, T. & Donald, B. R. Protocol for predicting drug-

resistant protein mutations to an ERK2 inhibitor using RESISTOR. STAR 

Protocols 4, 102170 (2023). 

 

5. Kugler, V., Lieb, A., Guerin, N., Donald, B. R., Stefan, E. & Kaserer, T. 

Disruptor: Computational identification of oncogenic mutants disrupting 

protein-protein and protein-DNA interactions. Commun Biol 6, 1–6 (2023). 

 

Other content, such as that presented in Chapter 3 and Appendix B, showcase original 

research which has not yet been published: 

 

Guerin, N., Childs, H., Zhou, P., and Donald, B.R. DexDesign: A new 

OSPREY-based algorithm for designing de novo D-peptide inhibitors. 

Submitted to journal, under review. 
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2 Resistor: A novel algorithm for predicting resistance 
mutations from structures and sequences 

In 2019 Teresa Kaserer contacted our lab to ask for advice on OSPREY.  We had 

recently read her publication in Cell Chemical Reports28 in which she used OSPREY to 

predict resistance mutations in cancer systems. We had ideas about extending the 

protocol she laid out in that paper by using multi-objective optimization, and she had 

recommendations on which cancer systems to investigate. We decided to collaborate on a 

new algorithm, Resistor, and apply it to predicting resistance mutations in EGFR, BRAF, 

and ERK2. We ended up presenting Resistor at the RECOMB 2022 conference58 and 

publishing three additional articles that extended Resistor: one describing the algorithm 

with retrospective and prospective experimental validation30; one on the software module 

in OSPREY that implements Resistor59; and one describing a step-by-step protocol for 

using Resistor31. This chapter is adapted from those publications. 

Bruce R. Donald, Teresa Kaserer, and I worked closely together on this research. 

The conceptualization of the algorithm, choice of cancer and drug targets to apply it to, 

and analysis of the computational predictions and experimental data was a joint effort. 

The drafting and editing of the manuscripts were also highly collaborative. Fortuitously, 

Teresa introduced two experimentalists from the University of Innsbruck to our group: 

Stefan Eduard and Andreas Feichtner. Stefan and Andreas used their KinCon60–62 

cell-based kinase reporter assay to test and validate Resistor's predictions for our Cell 

Systems publication30. In addition to the collaborative effort described above, I 

implemented Resistor in the open source OSPREY software package and used it to 

generate all of the computational predictions we present in this chapter and Appendix A.  
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2.1 Introduction 

Acquired resistance to therapeutics is a pressing public health challenge that 

affects maladies from bacterial and viral infections to cancer63–67. There are several 

different ways cancer cells acquire resistance to treatments, including drug inactivation, 

drug efflux, DNA damage repair, cell death inhibition, and escape mutations, among 

others64. The accurate, prospective prediction of resistance mutations could allow for the 

design of drugs that are less susceptible to resistance. Although it is unlikely that 

medicinal chemists will be able to address all the resistance-conferring mechanisms in 

cancer cells, progress can be made by the incorporation of increasingly accurate models 

of the above contributing factors to acquired resistance, leading to the development of 

more durable therapeutics. To that end, several structure-based computational techniques 

for therapeutic design and resistance prediction have been proposed. 

One such technique is based on the substrate-envelope hypothesis. In short, the 

substrate-envelope hypothesis states that drugs designed to have the same interactions as 

the endogenous substrate in the active site will be unlikely to lose efficacy because any 

mutation that ablates binding to the drug would also ablate binding to the endogenous 

substrate68. C. Schiffer and B. Tidor’s labs developed the substrate-envelope hypothesis 

for targeting drug-resistant HIV strains68–71. Their design technique has been successfully 

applied to develop compounds with reduced susceptibility to drug-resistant HIV 

proteases71. 

Another computational technique is to use an ensemble-based positive and 

negative designs72,73. There are two specific ways that point mutations can confer 

resistance to therapeutics: they can decrease binding affinity to the therapeutic or they 
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can increase binding to the endogenous ligand29,72. Protein design with the goal of 

decreasing binding is known as negative design and increasing binding is known as 

positive design. As a concrete example, consider the case of a drug that inhibits the 

tyrosine kinase activity of the epidermal growth factor receptor (EGFR) to treat lung 

adenocarcinoma. Here, an active site mutation could sterically prevent the inhibitor from 

entering the active site74. On the other hand, a different mutation might have no effect on 

an enzyme’s interactions with the drug but instead increase affinity to its native ligands, 

resulting in the increased phosphorylization of downstream substrates75,76. Because these 

two distinct pathways to therapeutic resistance exist, it is necessary to predict resistance 

mutations using both positive and negative design. In other words, predicting resistance 

can be reduced to predicting a ratio of the change in 𝐾𝑎 upon mutation of the 

protein:endogenous ligand and protein:drug complexes. 

𝐾𝑎 is an equilibrium constant measuring the binding and unbinding of a ligand to 

a receptor. It is defined as: 

 𝐾𝑎 =
𝐾on

𝐾off
=

[𝑅𝐿]

[𝑅][𝐿]
 , (Equation 6) 

where 𝑘on and 𝑘off are the on- and off-rate constants, and [RL], [𝑅], and [𝐿] the 

equilibrium concentrations of, respectively, the receptor-ligand complex, unbound 

receptor, and unbound ligand. 𝐾𝑎 is the reciprocal of the disassociation constant 𝐾𝑑. K* is 

an algorithm implemented in the OSPREY computational protein design software that 

provably approximates 𝐾𝑎
17,35. It is defined as the quotient of the bound (complex) to 

unbound (apo protein and apo ligand) partition functions of a protein:ligand system. See 

section 1.2.2 for further details on the K* algorithm. 
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 Our lab developed a provable, ensemble-based method using positive and 

negative design to computationally predict and experimentally validate resistance 

mutations in protein targets72. We then applied this methodology to prospectively predict 

resistance mutations in dihydrofolate reductase when Staphylococcus aureus was treated 

with a novel antifolate29,  which we later confirmed in vivo29,77, demonstrating the utility 

of correctly predicting escape mutations during the drug discovery process. 

  From these previous works, it is clear that multiple criteria must be combined to 

decide whether a mutation confers resistance. Often it is the human designers themselves 

who must choose arbitrary weights for different criteria. Yet, multi-objective, or Pareto, 

optimization techniques would allow designers to combine multiple criteria without 

choosing arbitrary decision thresholds. Pareto optimization for protein design has been 

employed by Chris Bailey-Kellogg, Karl Griswold, and co-workers6–9,78,79. One such 

example is PEPFR (protein engineering Pareto frontier), which enumerates the entire 

Pareto frontier for a set of different criteria such as stability versus diversity, affinity 

versus specificity, and activity versus immunogenicity80. Algorithmically, PEPFR 

combined divide-and-conquer with dynamic or integer programming to achieve an 

algorithm where the number of divide-and-conquer "divide" steps required for the search 

over design space is linear only in the number of Pareto optimal designs. Being 

dependent on multiple criteria, a multi-objective optimization method that ranks 

solutions, such as Pareto optimization, is particularly suitable for resistance predictions. 

 Instead of merely finding a single solution optimizing a linear combination of 

functions, Pareto optimization finds all consistent solutions optimizing multiple 

objectives such that no solution can be improved for one objective without making 
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another objective worse. Specifically, let Λ be the set of possible solutions to the multi-

objective optimization problem, and let λ ∈ Λ. Let ℱ be a set of objective functions and 

𝑓 ∈ ℱ, where 𝑓: Λ → R is one objective function. A particular solution λ is said to 

dominate another solution λ′ when 

 𝑓(λ) ≤ 𝑓(λ′) for all 𝑓 ∈ ℱ, and (Equation 7) 

 𝑔(𝜆) ≤ g(𝜆′) for at least one g ∈ ℱ. (Equation 8) 

 A solution λ is Pareto optimal if it is not dominated. Resistor combines ensemble-

based positive and negative design, cancer-specific mutational signature probabilities, 

and hotspots to identify not only the Pareto frontier but also the Pareto ranks of all 

candidate sequences. 

 The inclusion of mutational signature probabilities in Pareto optimization is 

possible because distinct mutational processes are operating in different types of 

cancers81,82. Specifically, these mutational processes drive the type and frequency of 

DNA base substitutions. Alexandrov et al. postulated each signature to be associated with 

a biological process (such as APOBEC activity) or a causative agent (such as tobacco 

use), although not all associations are definitively known. What is certain is that 

particular signatures tend to appear in particular types of cancer. For example, 12 single-

base substitution signatures, 2 double-base substitution signatures, and 7 indel signatures 

were found in a large set of melanoma samples, with many of those signatures associated 

with ultraviolet light exposure82. Building on the work of Alexandrov et al., Kaserer and 

Blagg combined the multiple signatures found in each cancer type to generate overall 

single-base substitution probabilities28. Resistor uses these probabilities to compute the 

overall probability that mutation events will occur in a gene independent of changes to 
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protein fitness. This amino acid mutational probability is one of the axes we optimize 

over. 

 The most computationally complex part of provable, ensemble-based multistate 

design entails computing the K* scores of the different design states. This is largely 

because for biological accuracy it is necessary to use K* with continuous side-chain 

flexibility47,83. Though OSPREY has highly optimized GPU routines for continuous 

flexibility35, energy minimization over a combinatorial number of sequences in a 

continuous space is, in practice, computationally expensive. Having a method to reduce 

the number of sequences evaluated would greatly decrease the computational cost. 

COMETS is an empirically sublinear algorithm that provably returns the optimum of an 

arbitrary combination of multiple sequence states36. Resistor uses COMETS to prune 

sequences whose predicted binding with the drug improves and binding with the 

endogenous ligand deteriorates. Although COMETS does not compute the full partition 

function, it provides a useful method to efficiently prune a combinatorial sequence space, 

for example, when investigating resistant protein targets with more than one resistance 

mutation. By virtue of pruning using COMETS, Resistor inherits the empirical 

sublinearity characteristics of the COMETS sequence search, rendering Resistor 

sublinear in the size of the sequence space. 

 The tyrosine kinase EGFR and serine/threonine-protein kinase BRAF are two 

oncogenes associated with, respectively, lung adenocarcinoma and melanoma. Both 

kinases are conformationally flexible, but two conformations are particularly 

determinative to their kinase activity—the "active" and "inactive" conformations. 

Oncogenic mutations to EGFR include L858R and deletions in exon 19, both of which 
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constitutively activate EGFR84,85. Likewise, V600E is the most prevalent constitutively 

activating mutation in BRAF86. Numerous drugs have been developed to treat the EGFR 

L858R and BRAF V600E mutations. The first-generation inhibitors erlotinib and 

gefitinib competitively inhibit ATP binding in EGFR's active site, whereas binding by the 

third-generation osimertinib is irreversible87–89. For BRAF, the therapeutics dabrafenib, 

vemurafenib, and encorafenib were designed to target the V600E mutation and are in 

clinical use, and PLX8394 is in clinical trials90–93. The use of Resistor to predict 

resistance mutations to these drugs would provide strong validation of the efficacy of this 

approach. 

By presenting Resistor, this chapter makes the following contributions: 

1. A multi-objective optimization algorithm that combines four axes of resistance-

causing criteria to rank candidate mutations. 

2. The use of COMETS as a provable and empirically sublinear pruning algorithm 

that removes a combinatorial number of candidate sequences before expensive 

ensemble evaluation. 

3. A validation of Resistor that correctly predicted eight clinically significant 

resistance mutations in EGFR, providing explanatory ensemble-bound structural 

models for acquired resistance. 

4. Prospective predictions with explanatory structural models and experimental 

validation of resistance mutations for four drugs targeting BRAF mutations in 

melanoma. 

5. Newly modeled structures of EGFR and BRAF bound to their endogenous ligands 

and inhibitors in cases where no experimental structures exist. 
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6. An implementation of Resistor in our laboratory’s free and open-source 

computational protein design software OSPREY35. 

 

2.2 Results 

2.2.1 Overview of Resistor 

The Pareto optimization in Resistor optimizes four axes: structure-based positive 

design, structure-based negative design, sequence-based mutational probabilities, and the 

count of resistance-causing mutations at a given amino acid location. Briefly, we chose 

these four criteria because they identify mutations that (1) increase affinity to the 

endogenous ligand in such a way that it outcompetes the inhibitor, (2) decrease the 

efficacy of the drug by reducing its binding (leading to the same effect), (3) are predicted 

to occur based on the DNA sequence and excludes those that are unlikely to arise, and (4) 

are located at residue positions where many mutations are predicted to confer resistance, 

thus identifying a position of relative importance. We believe these criteria to be the 

minimal requirements a cancer clone must fulfill to confer resistance, and we have had 

success predicting retrospective and prospective resistance mutations in a previous study 

using these four criteria28. 

In Kaserer and Blagg's earlier study28, they prioritized potential resistance mutants 

by first applying four sequence- and structure-based filtering steps and then pruning the 

remaining predicted resistance mutations by (1) choosing the three residue locations with 

the highest hotspot cardinality (Section 2.2.4) and (2) ranking the individual amino acids 

within the hotspots by their mutational probability28. In other words, they ranked 

resistance candidates by two criteria: their hotspot cardinality and mutational probability. 
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With Resistor, hotspot cardinality instead becomes one of the Pareto objectives. Their 

earlier work used the positive and negative design K* scores as a binary resistance 

filter28. Here, we use them first as a filter and then as two additional Pareto optimization 

objectives. This allows Resistor to use thermodynamic predictions not only in a binary, 

qualitative manner (i.e., whether the ratio of K* positive and negative designs indicates 

resistance) but also in a quantitative manner (i.e., the magnitude of the affinity-driven 

resistance). Finally, Resistor also transforms mutational probability from the final ranking 

criteria to one of the four Pareto objectives. In summary, Resistor’s Pareto optimization 

objective function simultaneously maximizes the Δ𝐾𝑎 of the positive design (the protein 

bound to the endogenous ligand), minimizes the Δ𝐾𝑎 of the negative designs (the protein 

bound to the drug), maximizes the mutational probability, and maximizes the count of 

resistance-causing mutations per amino acid. Figure 1 shows an overview of how these 

axes are implemented in our algorithm. It should be mentioned that, as a generalizable 

method, additional resistance-causing criteria could be trivially added to Resistor for 

further refinement. 
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Figure 1: An example Resistor workflow with EGFR.  Resistor finds the Pareto frontier from OSPREY 

positive and negative designs, mutational probabilities, and resistance hotspots. (A) Two structures are 

required as input to OSPREY to compute positive and negative design K* scores. The structure for positive 

design is EGFR (green) bound to its endogenous ligand ATP (blue), for the negative design EGFR is bound 

to the drug erlotinib (pink). The goal of positive (resp. negative) design is to improve (resp. ablate) binding 

affinity. A mutation is resistant when its ratio of positive to negative K* scores increase. (B) All residues 

within 5 Å (purple) of the drug are allowed to mutate to any other amino acid. (C) COMETS is used as an 

efficient, sublinear algorithm to quickly prune infeasible mutations. BWM* is used with a fixed branch width 

to compute a polynomial-time approximation to the K* score. (D) Candidate mutations that pass the 

COMETS pruning step have their positive and negative K* scores computed in OSPREY. We recommend 

using the BBK* with MARK* algorithm as it is the fastest for computing K* scores. (E) Candidate resistance 

mutations are pruned when their ratio of positive to negative K* scores indicates a mutation does not cause 

resistance or if the target amino acid requires a mutation in all three DNA bases. (F and G) (F) Resistor 

computes mutational probabilities using a protein’s coding DNA along with cancer-specific trinucleotide 

mutational probabilities for lung adenocarcinoma (abbreviated as LuAd), sliding a window (G) over 5′- and 

3′-flanked codons. (H and I) (H) Resistor employs a recursive graph algorithm to compute the probability 

that a particular amino acid will mutate to another amino acid (I). (J) Finally, Resistor uses Pareto 

optimization on the positive and negative K* scores, the mutational probabilities, and hotspot counts to 

predict resistance mutants.   
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2.2.2 Structure-based positive and negative design 

We use the K* algorithm21,47 in OSPREY to predict an ε-accurate approximation 

to the binding affinity (𝐾𝑎) in four states: (1) the wild-type structure bound to the 

endogenous ligand, (2) the wild-type structure bound to the therapeutic, (3) the mutated 

structure bound to the endogenous ligand, and (4) the mutated structure bound to the 

therapeutic. This ε-accurate approximation is called the K* score17,35. In order to 

calculate the score of a protein:ligand complex, it is necessary to have a structural model 

of the atomic coordinates. Experimentally determined complexes have been solved for 

EGFR bound to an analog of its endogenous ligand (PDB ID 2itx), erlotinib (PDB ID 

1m17), gefitinib (PDB ID 4wkq), and osimertinib (PDB ID 4zau) 94–97. Similarly, we 

used the crystal structure for BRAF bound to dabrafenib (PDB ID 4xv2) and vemurafenib 

(PDB ID 3og7)98,99. Experimentally determined complexes of BRAF bound to 

encorafenib, PLX-8394, and an ATP analog in an active conformation do not exist, so we 

instead modeled the ligands into BRAF in its activated conformation (for additional 

details on model selection and preparation see Appendix A.1). We used these predicted 

complex structures for our resistance predictions. 

We added functionality to OSPREY that simplifies the process of performing 

computational mutational scans. A mutational scan refers to the process of computing the 

K* score of every possible amino acid mutation within a radius of a ligand. Resistor uses 

this functionality to create the initial set of candidate mutant sequences by selecting and 

computing the K* scores for each amino acid within a 5 Å radius of the drug or the 

endogenous ligand. This generated a search space of 2471 sequences. We then set all 

residues with side chains within 3 Å of the mutating residue to be continuously flexible 
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for the Resistor K* designs. Each sequence has an associated conformation space size 

dependent on the total number of mutable and flexible residues, which one can use as a 

heuristic to estimate the difficulty of computing a complex’s partition function. The 

average conformation space size of each sequence was ∼ 5.9 × 1010 conformations, thus 

computing the partition functions is only possible using OSPREY’s pruning and provable 

ε-approximation algorithms35,37,47. Empirical runtimes of the positive- and negative-K* 

designs are shown in Appendix A.4. The change in the K* score upon mutation for the 

endogenous ligand (positive design) and drug (negative design) becomes two of the four 

axes of optimization. These two axes also form the basis of a pruning step (as described 

in Section 2.2.5). 

2.2.3 Computing the probability of amino acid mutations 

The genomic component of Resistor exploits mutational signatures derived from 

whole genome and whole exome sequencing of cancers81,82. A mutational signature is a 

distribution representing the probability that one nucleotide will mutate to another 

nucleotide in a given codon context and particular cancer type81. The different signatures 

are a result of diverse mutational processes81, and different cancer types are associated 

with one or more mutational signatures. And although a cancer type is associated with a 

set of signatures, not every associated signature is found in all tumor samples of a 

particular cancer type. We use these empirical mutational signature data to calculate the 

probability that an amino acid's codon mutates to another amino acid. 

 Specifically, let 𝐶 be the set of cancers and 𝑆 the set of mutational signatures, 

with 𝑐 ∈ 𝐶 and 𝑠 ∈ 𝑆. We denote the set of signatures operative in a particular cancer 𝑐 as 

𝑆𝑐, and the proportion of tumor samples in 𝑐 exhibiting signature 𝑠 as 𝑊𝑐𝑠. Let 𝐷 be the 
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set of amino acid-encoding codons and 𝐴 the set of amino acids, with 𝑑 ∈ 𝐷 and 𝑎 ∈ 𝐴. 

We denote the set of codons encoding amino acid 𝑎 as 𝐷𝑎. Last, we denote 𝑍 as the set of 

ways that 𝑑 can mutate to any 𝑑′ ∈ 𝐷𝑎 within two single mutational events. Then to 

calculate the probability that codon 𝑑 mutates to amino acid 𝑎 we compute: 

 

 𝑃( 𝑑 → 𝐷𝑎 ∣∣ 𝐶 ) = 𝑠 ∈ 𝑆𝑐𝑃( 𝑑 → 𝐷𝑎 ∣∣ 𝑠 )𝑊𝑐𝑠 (Equation 9) 

  = ∑ ∑ 𝑃( 𝑑 → 𝑑′ ∣ 𝑠 )𝑊𝑐𝑠

𝑑′∈𝐷𝑎𝑠∈𝑆𝑐

 (Equation 10) 

  = ∑ ∑ 𝑃( 𝑧 ∣ 𝑠 )𝑊𝑐𝑠

𝑧∈𝑍𝑠∈𝑆𝑐

 . (Equation 11) 

 

We determine Z for all amino acids and compute the values 𝑃( 𝑧 ∣ 𝑠 ) using a 

recursive graph algorithm. For this, we construct a directed graph 𝐺(𝑣, 𝑒) for each 

mutational signature where the vertices 𝑣 are codons and edges 𝑒 connect codons that 

differ by their center base. The weight assigned to each edge 𝑒 is the probability of one 

codon mutating to another codon, as provided by Alexandrov et al81. The input codon 𝑑 

must contain two flanking bases to lookup the probability of the first or last base of the 

codon mutating. Inputs to the algorithm are 𝐺, 𝑑, the path probability (𝑝), and the max 

number of mutational steps (𝑛). The algorithm enumerates all possible single point 

mutations in 𝑑 in a function called step_codon. It looks up the probability of mutating 

from the current codon to the next codon using 𝐺 and recursively calls itself 𝑛 times. 

When the terminating condition is met the algorithm returns the set of codons it reached 

in ≤ 𝑛 steps and their probabilities. See Figure 2 for pseudocode of the algorithm. 
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As evident in Figure 2, the recursive algorithm traverses the graph and find all 

codons that can be reached within n single-base mutations, where n is an input parameter. 

The algorithm then translates the target codons into amino acids and, as a final step, sums 

the different probabilities on each path to an amino acid into a single amino acid 

mutational probability (see Figure 1 F–I). One can either (1) precompute a cancer-

specific codon-to-codon lookup table consisting of every 5′- and 3′-flanked codon to its 

corresponding amino acid mutational probabilities or (2) read in a sequence’s cDNA and 

compute the mutational probabilities on the fly. The benefit of (1) is it only needs to be 

done once per cancer type and can be used on an arbitrary number of sequences. On the 

other hand, when assigning mutational probabilities to proteins that have strictly fewer 

than 45 amino acids, it is faster to compute the amino-acid-specific mutational signature 

on the fly. In both cases, the algorithm is strictly polynomial and bounded by 𝑂(𝑘𝑛9), 

where 𝑘 is the number of codons with flanking base pairs (upper-bounded by 45) and 𝑛 is 

the number of mutational steps allowed, which in the case of Resistor is 2. An 

implementation of this algorithm is included in the free and open-source OSPREY 

repository on GitHub35. 
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Figure 2: An algorithm for calculating mutational probabilities. calc_probs computes the complete set 

of paths that can be reached within 𝒏 mutational steps from codon. The parameter path_prob is the probability 

of reaching the current codon via a particular path. After calc_probs is executed, the codons reached by all 

paths and their associated probabilities are in the paths variable. The codons in this variable are then grouped 

and summed by the amino acid they encode (omitted below). The initial invocation of calc_probs initializes 

path_prob to 1. The step_codon function produces all 9 variants of a codon with a single mutated base. 

2.2.4 Identifying mutational hotspots 

After calculating the positive and negative change in affinity Δ𝐾𝑎 and 

determining the mutational probability of each amino acid, Resistor prunes the set of 

candidate mutations (see section 2.2.5). Post pruning, it counts the number of mutations 

at each amino acid location. This count is necessary to determine whether a residue 

location is likely to become a "mutational hotspot," namely a residue location where 

many mutations are predicted to confer resistance. Correctly identifying mutational 

hotspots is vital because they indicate that a drug is dependent on the wild-type identity 

of the amino acid at that location, and it is likely that many mutations away from that 

amino acid will cause resistance. Consequently, the fourth axis used in Resistor’s Pareto 

optimization is the count of predicted resistance-conferring mutations per residue 

location, termed "hotspot cardinality." 
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2.2.5 Reducing the positive prediction space 

Prior to carrying out the multi-objective optimization to identify predicted 

resistance mutations, we prune the set of candidates. First, we introduce a cutoff based on 

the ratio of 𝐾∗ scores of positive and negative designs, an adaption from Kaserer and 

Blagg28. We determine the average of the 𝐾∗ scores for the drug and endogenous ligand 

across all of the wild-type designs for the same protein. The cutoff 𝑐 is: 

 𝑐 =  
𝑐0 𝐾�̅�

∗ 

𝐾
�̅�
∗  , (Equation 12) 

where 𝑐0 is a user-specified constant, 𝐾�̅�
∗ is the average of the 𝐾∗ scores for the wild-type 

protein bound to the endogenous ligand, and 𝐾�̅�
∗  is the average of the 𝐾∗ scores for the 

wild-type protein bound to the drug. We recommend in practice to set 𝑐0 to be greater 

than the range (𝐾𝑚𝑎𝑥
∗ − 𝐾𝑚𝑖𝑛

∗ ) of wild-type 𝐾∗ scores—we set it to 100 for the tyrosine 

kinase inhibitor (TKI) predictions. (In the future, 𝑐0 could be learned from running 

Resistor on a resistance mutation dataset for homologous systems and examining the 

𝐾∗ scores). A mutation 𝑚 is predicted to be resistant when: 

 
𝐾𝐿

∗(𝑚)

𝐾𝐷
∗ (𝑚)

> 𝑐 , (Equation 13) 

Where 𝐾𝐿
∗(𝑚) is the 𝐾∗ score of the endogenous ligand bound to the mutant, and 𝐾𝐷

∗ (𝑚) 

is the 𝐾∗ score of the drug bound to the mutant. 

 We also prune mutations predicted to completely ablate endogenous ligand 

binding, i.e., the predicted 𝐾∗ score of the protein and endogenous ligand is 0, because 

such a mutation renders a critical protein non-functional. This is particularly detrimental 

to a cancer cell, which relies heavily on the activity of a protein. We lastly prune the 

predicted resistance mutation candidates by removing all mutations that cannot arise 
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within two DNA base substitutions. Whether an amino acid can be reached within two 

DNA base substitutions is determined by the algorithm described in Section 2.2.3, and if 

it cannot, then that particular mutation is assigned a mutational probability of 0 and 

pruned. 

2.2.6 Resistor identifies 8 known resistance mutations in EGFR 

We evaluated a total of 1,257 sequences across the three TKIs for EGFR. Among 

these sequences, the average conformation space size for computing a complex’s 

partition function was ∼ 1.3 × 107. After we ran the Resistor algorithm on these 

sequences, a total of 108 mutants were predicted as resistance-conferring candidates for 

all three inhibitors combined from a purely thermodynamic and probabilistic basis, i.e., 

these mutations were required to lower the affinity of the drug in relation to the 

endogenous ligand (K* positive and negative design, Figure 1 A–D) and could be formed 

in patients by less than three-base pair exchanges (calculating mutational probabilities, 

Figure 1 F–I). To further prioritize mutations and identify those that are most likely to be 

clinically relevant, we then computed the Pareto frontier over the four axes for each drug 

(Figure 1 J). Out of these 108 candidates, Resistor correctly prioritized eight clinically 

significant resistance mutants, with 7 of the 8 in the Pareto frontier of the corresponding 

inhibitor and the remaining mutant in the 2nd Pareto rank (see Table 1). The full set of 

predictions are in Table 4 – Table 6 on pages 128-131. A detailed description of the result 

for each inhibitor is included in the sections below. 
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Table 1: Resistor correctly identified 8 resistance mutations in EGFR to erlotinib, gefitinib, and 

osimertinib. For osimertinib, G796R, G796S, G796D, and G796C were on the Resistor-identified Pareto 

frontier. L792H was in the 2nd Pareto rank. For erlotinib, both T790M and G796D were on the Pareto frontier. 

For gefitinib, T790M was also on the Pareto frontier. Previous studies have documented all of these resistance 

mutations as occurring in the clinic100–107. a Indicates that Resistor predicted the mechanism of resistance to 

be decreased binding of the drug to the mutant. Note that these predicted mechanisms are only attributed here 

if the predicted change in the log10 ΔK* score ≥ 0.5.  b Indicates that Resistor predicted the mechanism of 

resistance to be improved binding of the endogenous ligand to the mutant. 

Osimertinib Erlotinib Gefitinib 
L792Ha T790Ma,b T790Ma,b 

G796Ra,b G796Da - 
G796Sa - - 
G796Da - - 
G796Ca - - 

 

2.2.7 EGFR treated with erlotinib and gefitinib 

Of the 462 sequences evaluated for the TKI erlotinib, Resistor identified 50 as 

candidate resistance mutations. Pareto ranking placed 19 sequences on the frontier, 13 

sequences in the second rank, and 11, 6, and 1 sequences in the third, fourth, and fifth 

ranks, respectively. Resistor correctly identified two clinically significant mutations, 

T790M and G796D, as being on the Pareto frontier100,101. This is concordant with 

empirical data showing that T790M is, by far, the most prevalent resistance mutation that 

occurs in lung adenocarcinoma treated with erlotinib108. Similarly, for gefitinib, Resistor 

evaluated 438 sequences and identified 22 as candidate resistance mutants. The most 

relevant clinical mutant, T790M, is found on the Pareto frontier. 

2.2.8 EGFR and osimertinib 

Resistor evaluated 357 OSPREY-predicted structures of EGFR bound with 

osimertinib and EGFR bound with its endogenous ligand. Of those, 36 were predicted as 

resistance candidates. Pareto optimization placed 16 sequences on the frontier, 2 

sequences in rank 2, 8 sequences in rank 3, 1 sequence in rank 4, and 5 sequences in rank 
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5. Resistor correctly identified five clinically significant resistance mutations to 

osimertinib: L792H, G796R, G796S, G796D, and G796C102–107, and while L792H was in 

the 2nd Pareto rank, all of the other correctly predicted resistance mutations are on the 

Pareto frontier. 

Two osimertinib resistance mutations stand out: L792H and G796D (see Figure 

3). Both of these mutants have appeared in the clinic102–104,107. OSPREY generated an 

ensemble of the bound positive and negative complexes upon mutation, providing an 

explanatory model for how resistance occurs. In both cases, the mutant side chains are 

much bulkier than the wild-type side chain (Figure 3A and 5D) and thus are predicted to 

clash with the original osimertinib binding pose (Figure 3B and 5E). Consequently, in 

both cases, the ligand is predicted to translate and rotate to create additional space for the 

mutant side chains (Figure 3C and 5F). We hypothesize that this movement weakens the 

other molecular interactions osimertinib makes in the EGFR active site. 
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Figure 3: Structural models predicted by OSPREY agree with experimental data and explain 

mechanisms of osimertinib resistance to EGFR mutations L792H and G796D. Structural models 

predicted by OSPREY of EGFR wild-type (blue) and resistance mutations (red) bound to osimertinib (yellow 

sticks). The histidine (A) and glutamate (D) side chains (red sticks) in the EGFR L792H (A) and G796D (D) 

mutations are bulkier than the wild-type leucine (A) and glycine (C) residues (blue sticks). They clash with 

osimertinib in its original binding pose as highlighted by the sphere representation in (B) and (E). (C and F) 

To allow for the accommodation of osimertinib in the modeled EGFR mutant structures (red sticks), the 

inhibitor’s position within the binding pocket moves from the experimentally determined binding pose 

(yellow sticks). Movements are indicated by black arrows. (F) In case of the G796D mutation, the carboxylate 

moiety of D796 is predicted to be in close proximity to the osimertinib amide oxygen (highlighted with the 

dashed circle), thus leading to electrostatic repulsion. This mutation site is adjacent to C797, which reacts 

with the allyl-moiety of osimertinib to form a covalent bond in the wild type. Due to the steric and 

electrostatic properties of the G796D mutant, the allyl group is located further away from C797 in the model, 

thus preventing covalent bond formation. The movement of the allyl group is indicated by the black arrow. 
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In the case of G796D, there are additional factors that contribute to acquired 

resistance. First, the mutation to aspartate introduces a negative charge, which probably 

leads to electrostatic repulsion with the carbonyl oxygen of the osimertinib amide (Figure 

3F, highlighted with a dashed oval). In addition, the exit vector of the hydrogen bound to 

the amide nitrogen does not allow a hydrogen bond with the aspartate. Second, the allyl 

group of osimertinib must be in close proximity to C797 for covalent bond formation. In 

fact, C797 is so important to osimertinib’s efficacy that mutations at residue 797 confer 

resistance109,110. Even if osimertinib still binds to G796D, the allyl group would have to 

move away from C797 (Figure 3F, highlighted with a black arrow). This would prevent 

covalent bond formation and thus reduce the efficacy of osimertinib considerably. Lastly, 

it is likely that the mutation away from glycine reduces the conformational flexibility of 

the loop, incurring an entropic penalty while also plausibly making it more difficult to 

properly align osimertinib and C797. 

2.2.9 Resistor predicts previously unreported resistance mutations in 
BRAF and provides structural models 

In addition to retrospective validation by comparison with existing clinical data for 

EGFR, we used Resistor to predict how mutations in the BRAF active site could confer 

resistance. Specifically, we used Resistor to predict which of the 1,214 BRAF sequences 

would be resistant to four kinase inhibitors—vemurafenib, dabrafenib, encorafenib, and 

PLX8394. On the Pareto frontier for vemurafenib are 13 mutations, for dabrafenib are 16 

mutations, for encorafenib are 15 mutations, and for PLX8394 are 15 mutations. The full 

sets of predictions are included in Table 4 –   
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Table 10 on pages 128-142. To validate Resistor’s predictions, we compared them with 

two sources of experimental data: a saturation mutagenesis variant effect assay from 

Wagenaar et al. and a cell-based kinase conformation reporter assay termed KinCon60,61. 

Furthermore, Stefan Eduard and Andreas Feichtner carried out additional KinCon 

experiments on a number of Resistor predictions to validate Resistor’s predictive 

capabilities. 

2.2.10 Retrospective and prospective validation of Resistor 
predictions using the BRAF-KinCon biosensor reporter 

KinCon, developed by Stefan and colleagues, is an in-cell protein-fragment 

complementation assay (PCA) that provides a readout of the activity conformation 

change of full-length BRAF upon mutation or exposure to different inhibitors111. 

KinCon’s bioluminescence assay functions by appending parts of a luceriferase enzyme 

to the N- and C-termini of full-length BRAF and observing the amount of 

bioluminescence, indicating whether BRAF favors an open, catalytically active or a 

closed, autoinhibited conformation111 (see Figure 4A). Stefan and colleagues have 

demonstrated that activation of BRAF either via upstream regulators such as EGFR and 

GTP activated Ras or via tumorigenic mutations cause BRAF to favor an open 

conformation60,61. The inhibitors bind to BRAF in the ATP binding site and cause 

BRAF’s N and C termini to interact, shifting BRAF back toward a more closed, 

intermediate state60,61,111 (see Figure 4A). This implies that for inhibitor binding and 

BRAF closing to occur, a mutation (or a combination of mutations and/or upstream 

signaling events) needs first to induce an open conformation. Not all clinically observed 

BRAF mutations cause opening, even if they activate the MAPK pathway61,112 (e.g., 
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L472C). In the same vein, not all BRAF resistance mutants show increased kinase 

activity, in fact, several are classified as kinase impaired61,112,113. One prominent mutation 

that shows both increased kinase activity and induces an open conformation is V600E 

(Figure 4B). Inhibitor treatment shifts the V600E conformational equilibrium toward a 

more closed state60,61. By contrast, the gatekeeper mutations T529M and T529I do not 

confer the opening of the kinase conformation and are thus insensitive to inhibitor 

treatment60. However, in combination with V600E, these mutations do confer resistance 

to BRAF inhibitors to varying degrees. Given that we model a state that is permissive of 

ligand binding at the outset (i.e., the ligand-bound BRAF complex), our Resistor 

calculations align very well with the reported KinCon measurements of double mutants 

(e.g., V600E/T529M and V600E/T529I; see Appendix A.1 for additional information on 

modeling). 

 Specifically, the Resistor predictions of resistance concord with the previous 

KinCon biosensor results for V600E/T529M and V600E/T529I for three of the four 

inhibitors: vemurafenib, dabrafenib, and PLX839460. In the case of vemurafenib 

treatment, the proportion of open to closed conformations in the V600E/T529I mutant is 

not significantly different from the untreated V600E mutant, indicating vemurafenib 

treatment is not closing the conformational distribution in the double mutant60. These 

data agree with the Resistor calculation of the ratios of the log10 K* scores, which predict 

that both double mutants are resistant to vemurafenib, with V600E/T529M more 

resistant. Treatment of BRAF with PLX8394 follows the same pattern as vemurafenib, 

namely the V600E/T529I mutant’s closed population increases only 1.2-fold compared 

with the untreated mutant, and the PLX8394-treated V600E/T529M mutant does not 
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noticeably alter the conformational distribution60. By contrast, the PLX8394-treated 

V600E mutant’s closed population increases  ∼ 3-fold compared with the untreated 

population, indicating V600E sensitivity to PLX8394 (see Figure 4C). Resistor correctly 

predicted the V600E/T529I and V600E/T529M double mutants are resistant to PLX8394, 

with the change in the ratio of the log10 K* scores of the two mutants suggesting that 

V600E/T529M confers greater resistance. In the case of dabrafenib, the treatment of the 

V600E/T529I mutant closed the conformational distribution (2.4-fold more closed 

compared with untreated) more than the treatment of the V600E mutation (2-fold more 

closed compared with untreated), whereas the dabrafenib treatment of the V600E/T529M 

mutant increased the closed conformational population less effectively than the V600E 

mutant alone (1.4- versus 2-fold). This again agrees with the Resistor predictions, namely 

that V600E/T529I remains sensitive to dabrafenib but V600E/T529M is resistant. 

Resistor predicted that the V600E/T529I and V600E/T529M mutants would be resistant 

to encorafenib, but the KinCon data indicates that these mutants may actually retain 

sensitivity to encorafenib, as the inhibitor induces BRAF’s closed state. 

 In addition, all inhibitors except dabrafenib were predicted to be sensitive against 

the G466V mutation and showed the closing of the kinase conformation61. However, in 

the case of dabrafenib, the response was comparable with vemurafenib, although 

vemurafenib was classified as sensitive. Previous KinCon experiments have also shown 

that G466V (and G466R and G466E113, see below) impaired kinase function consistent 

with the reduced endogenous ligand binding predicted by Resistor61. 

 In addition to the above retrospective validation, we chose a few Resistor-

predicted mutations and evaluated them using the KinCon reporter. We selected the 
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mutants G466E, G466R, V471F, L505H, and G593D because they were prioritized by 

Resistor for at least one of the investigated inhibitors and were reported as patient 

mutations in either the COSMIC108 or cBioPortal114,115 databases, using the curated set of 

non-redundant studies (see Table 2). 

 The expression-normalized basal biosensor signal suggests that both G466E and 

G466R mutants shift the conformation to an opened state, comparable with the highly 

oncogenic V600E variant and similar to the effect of the common non-small-cell lung 

cancer mutation G466V61. The V471F, L505H, and G593D mutations, by contrast, did 

not appear to induce a change in the active conformation (Figure 4B). When exposed to 

BRAF inhibitors (Figure 4C), G466E and G466R mutants showed the highest fold 

increase of the biosensor signal for all four inhibitors tested. The majority of inhibitors, 

three out of four, were predicted as sensitive against these mutants. Resistor predicted 

G466E and G466R to be resistant to dabrafenib, and although Resistor predicted 

dabrafenib had lower sensitivity compared with encorafenib and PLX8394 (which is 

consistent with the KinCon results), dabrafenib-treated mutants shifted to a closed 

conformation at least as much as vemurafenib-treated mutants did. The L505H and 

G593D KinCon mutants were not affected by any inhibitors, as those mutations do not 

shift the kinase into an active opened kinase conformation that is required for inhibitor 

binding. Although vemurafenib and dabrafenib do not appear to affect the V471F mutant, 

encorafenib and PLX8394 did induce a closing of the kinase, suggesting that the 

structural properties of the inhibitor determine the binding affinity to this mutant. This is 

particularly intriguing, given that the V471F mutation was selected because we predicted 

it would confer resistance to encorafenib and PLX8394. Although the KinCon results 
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suggest that these two compounds still retain binding to the V471F mutant, the mutant 

itself did not induce a significant opening of the kinase confirmation required for ligand 

binding. For the latter three mutations (i.e., L505H, G593D, and V471F), it would 

therefore be required to induce the open conformation some other way, for example, by 

introducing the V600E mutation similar to T529I and T529M described above, to 

investigate whether resistance would develop to the inhibitors60. 
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Figure 4: KinCon biosensor results for Resistor-predicted mutants. (A) Schematic depiction of Renilla 

luciferase (RLuc; F1, fragment 1; F2, fragment 2) PCA-based BRAF kinase conformation (KinCon) reporter 

system. Conformational rearrangement of the reporter upon (de)activation of the kinase is indicated. Closed 

kinase conformation induces complementation of Rluc PCA fragments resulting in increased Rluc-emitted 

bioluminescence signal. (B) Domain organization of the BRAF-KinCon reporter (top) and basal 

bioluminescent signals of the BRAF-wt (black), V600E (red), and Resistor-predicted mutant (gray) KinCon 

biosensors. Bars represent the mean signals, relative to BRAF-wt, in relative light units (RLUs) with SD of 

four independent experiments (nodes). Raw bioluminescence signals were normalized on reporter expression 

levels, determined through western blotting. Asterisk indicates the level of significance versus the wild-type 

BRAF biosensor. (C) BRAF-KinCon biosensor dynamics induced via treatment with respective BRAFi 

(1 μM for 1 h) prior to bioluminescence measurement. BRAF-wt and V600E KinCon variants serve as the 

control (left). The Resistor-predicted mutants are shown in a separate bar chart (right). Bars represent the 

mean signals, relative to the DMSO control, in relative light units (RLUs) with SEM of four independent 

experiments (nodes). All experiments were performed in HEK293T cells 48 h post transfection. ∗p < 0.05; 

∗∗p < 0.01; ∗∗∗p < 0.001; n.s., not significant by t test. 
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Table 2: Prioritized BRAF mutations selected for experimental testing. We selected these mutants 

because they were prioritized by Resistor for at least one of the investigated inhibitors and were reported as 

patient mutations in either the COSMIC or cBioPortal databases. The numbers in the first four columns 

indicate the Resistor-predicted Pareto rank with melanoma mutational probabilities. The numbers in the last 

two columns indicate the number of patient samples containing the mutation reported in the respective 

database (access date 01/12/2022). The absence of a Pareto rank indicates Resistor predicted the mutant 

would remain sensitive to the drug. 

Mutation Vemurafenib Dabrafenib Encorafenib PLX8394 COSMIC cBioPortal 

G466E - 1 - - 49 31 
G466R - 1 - - 17 3 
V471F - - 2 3 5 2 
L505H - - 3 - 8 10 
G593D 1 1 1 1 4 0 

 

2.2.11 Retrospective validation of Resistor predictions using BRAF 
saturation mutagenesis experiments 

Wagenaar et al. examined the effects of BRAF inhibitor binding site mutations on 

inhibitor efficacy62. To do so, they carried out targeted saturation mutagenesis on the 

BRAF vemurafenib binding site in the A375 human melanoma cell line and challenged 

the mutants with vemurafenib over a 3-week period62. They then sequenced the emergent 

clones and measured the IC50 values of a subset of the mutants. Their work demonstrated 

a correlation between a mutant’s deep sequencing enrichment, i.e., the increase in the 

amount of an amino acid sequence in a sample before and after the addition of an 

inhibitor, and its IC50 value62. We, therefore, compared their enrichment data with the 

Resistor predictions and determined Resistor’s vemurafenib resistance prediction 

specificity to be 91%. There were five Resistor-predicted resistance mutations that had 

increased enrichment over the 3-week period: T529M already discussed above (enriched 

47.96-fold above the V600E baseline, which was the experiment’s largest change in 

enrichment), T529L (enriched 18.57-fold above baseline), T529F (enriched 7.87-fold 

above baseline), G593I (enriched 4.84-fold above baseline), and L514E (enriched 3.73-
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fold above baseline). Furthermore, Wagenaar et al. determined the relative IC50 values of 

T529M, T529L, and G593I that were, respectively, 2.05, 2.16, and 3.19 times larger than 

the IC50 value for vemurafenib applied to the V600E mutant. The IC50 values of T529F 

and L514E were not determined. 

To further elucidate the molecular mechanisms conferring resistance to the G593I 

and L514E mutants, we analyzed the OSPREY-predicted structural models. Although 

neither mutant requires a movement of vemurafenib (Figure 5A) akin to what was 

observed in the EGFR and osimertinib structures (Figure 3), the mutations still lead to a 

loss of favorable interactions and/or the introduction of energetically unfavorable 

contacts. The residue G593 (Figure 5B) may facilitate structural adaptions required for 

BRAF to accommodate the vemurafenib propyl sulfonamide moiety in the rear of the 

ATP binding site and the G593L mutations may thus constrain the flexibility of this loop 

region. In addition, the leucine side chain may project near the fluoro-substituted central 

phenyl ring and introduce steric clashes (Figure 5C). The neighboring D594 backbone 

interacts with the vemurafenib sulfonamide nitrogen (Figure 5B), and this interaction 

would be weakened in the G593L mutant. Furthermore, residue L514 makes a range of 

hydrophobic contacts with vemurafenib (Figure 5D), including the central phenyl ring 

and the propyl chain, which are lost in the L514E mutant (Figure 5E). 
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Figure 5: Structural analysis of BRAF mutations G593I and L514E. (A) No major movements were 

required for vemurafenib to bind to the G593I (yellow) and L514E (orange) mutation in comparison with the 

wild-type binding pose (blue). (B) BRAF G593 is located on the N terminus of the activation loop and may 

facilitate conformational changes required to accommodate the vemurafenib propyl sulfonamide moiety in 

the back of the pocket. The backbone of the neighboring D594 residue interacts with the sulfonamide nitrogen 

of vemurafenib as indicated by black dashed lines. (C) Mutation of G593 to L not only restricts the flexibility 

of the loop but also puts the leucine side chain in too close proximity to the fluoro-substituted phenyl ring 

(highlighted with the dashed circle). (D and E) (D) Residue L514 is involved in a variety of hydrophobic 

contacts with vemurafenib (indicated by yellow arrows), which are lost in the L514E mutant (E). 

  



 

56 

2.2.12 Complexity 

There are several distinct steps in Resistor, each of which has its own complexity. 

Although there are sublinear K* algorithms, such as BBK*38 with MARK*37, these 

algorithms so far have only been applied to positive and negative design with 

optimization of specific multiple objectives, such as minimizing/maximizing the bound 

(respectively unbound) state partition functions and their ratios for computing binding 

affinity or stability. COMETS36 provably does multistate design optimizing arbitrary 

constrained linear combinations of global minimum energy conformation (GMEC) 

energies, but COMETS does not model the partition functions required for calculating 

binding affinity. A provable ensemble-based algorithm analogous to COMETS for 

arbitrary multistate design optimization is yet to be developed. Thus, general multistate 

K* design remains, unfortunately, a problem linear in the number of sequences and thus 

exponential in the number of mutable residues. 

Computing K* itself, as a ratio of partition functions built from the 

thermodynamic ensembles of the bound to unbound states, can be expensive43,116,117. In 

order to reduce the number of K* problems to solve, COMETS is employed as a pruning 

mechanism for all sequences in which there are more than one mutation. Without 

COMETS, Resistor would need to compute 𝑠𝑁 K* scores, where 𝑠 is the number of 

states and 𝑁 is the number of sequences. With COMETS, Resistor is able to avoid 

computing many of these K* scores, as COMETS has been shown in practice to reduce 

the number of required GMEC calculations by over 99% and to reduce N for continuous 

designs by 96%, yielding an overall speedup of over 5 × 105-fold36. Since in this study 

we considered only single residue mutations, we omitted the COMETS pruning step, but 
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in any use of Resistor that considers multiple simultaneously mutable residues, we 

believe COMETS’ empirical sublinearity will make the difference between feasible and 

infeasible searches. 

Moreover, by using an approximation containing fixed partition function size and 

sparse residue interaction graphs, we can use the BWM* algorithm118 to compute the K* 

scores in time 𝑂 (𝑛𝑤2𝑞
3

2
𝑤 + 𝑘𝑛 𝑙𝑜𝑔 𝑞), where 𝑤 is the branch width and 𝑞 the number of 

rotamers per residue. When we have 𝑤 = 𝑂(1), this is polynomial time. In this study, we 

found that the ε-approximation algorithms using adaptively sized partition functions, such 

as BBK* with MARK*, were fast enough (see Figure 15 on page 122). However, for 

larger problems, the sparse approximations allow us to approximate the necessary K* 

scores for resistance prediction in time exponential only in the branch width and thus 

polynomial time for fixed branch widths. 

2.3 Discussion 

In this work, we report Resistor, a computational algorithm to systematically 

investigate protein mutations and identify those that have a high likelihood of lowering 

drug potency in comparison with native substrates. In addition, we analyze the 

probability that such a mutation is generated in cancer patients and thus likely of clinical 

importance. Our algorithm applies the power of Pareto optimization to resistance 

predictions, which provides an objective way of prioritizing the most relevant mutations 

for experimental testing. In addition, we used computationally predicted input structures 

of ligand-target complexes whenever experimental data was lacking. This broadens the 

targets on which Resistor can be used, as we have found that the availability of high-
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resolution experimental ligand-target structures still can present a major bottleneck in 

computational protein design. 

We have applied Resistor to two case studies, EGFR and BRAF, in a 

retrospective manner and, in case of BRAF, also included prospective experimental data 

for validation. In EGFR and BRAF, the algorithm correctly identified resistance 

mutations. Using the vemurafenib data from Wagenaar et al62, which is the most 

comprehensive dataset on BRAF mutations and vemurafenib resistance available, we 

determined Resistor’s vemurafenib resistance prediction specificity and sensitivity to be 

91% and 31%, respectively. In a data-rich setting such as proteomics (e.g., Lilien et al., 

2003)119, the sensitivity could be regarded as low. However, the prediction of 

antineoplastic resistance mutations is a sparse data problem. Comprehensive datasets on 

drug resistance mutations on specific targets are virtually non-existent. We speculate that 

the reason for this can be found in the large number of individual mutants that must be 

generated and tested. For example, in our study, we used Resistor to investigate 462, 438, 

and 357 individual mutants for erlotinib, gefitinib, and osimertinib, respectively. 

Although this is computationally feasible, it far exceeds the testing capacities of most 

experimental groups. Clinical resistance data is even more limited. Furthermore, even for 

those mutations that have been confirmed to confer clinical resistance in patients, the 

underlying molecular mechanisms often remain uninvestigated. 

Resistor prioritizes escape mutations causing ablation of inhibitor binding and/or 

tighter substrate binding (the latter as a proxy for 𝐾𝑀). However, mutations affecting the 

drug target could also mediate resistance via other molecular processes, such as altering 

the stability of conformational states or affinity of protein-protein interactions66,120. One 
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limitation of this study is that we modeled BRAF in its active conformational state. As 

Röck et al. showed60, BRAF inhibitors exhibited differences in specificity and efficacy by 

shifting BRAF’s conformational probability distribution from an open and active to a 

closed, inactive state. It is plausible that mutations far from the active site could 

destabilize the closed, inactive state and shift the conformational probability distribution 

back toward the open, active state. The modeling of the large allosteric destabilization of 

the inactive conformations has been discussed extensively in our previous work20,121, but 

its integration into Resistor is left for future work. 

In addition, clinical resistance is caused by several different mechanisms of which 

the relative importance of escape mutations can vary greatly. In some kinases, such as 

c-Abl, EGFR, and FLT3, active site escape mutations are the main cause of acquired 

resistance122. In other kinases, such as BRAF, escape mutations are not the main 

mechanism of acquired resistance123. Rather, splice variants, amplification, and mutations 

in related genes such as N-RAS, MEK1, MEK2, IGF-1R, and AKT comprise the 

majority of cases of clinical resistance123. From this perspective, the specificity of 

Resistor for BRAF and vemurafenib is remarkable, and the sensitivity is in line with the 

fraction of resistance mutations whose etiology definitively escaped via active site 

mutation. 

We believe that the remaining gap can be closed in future work by modeling 

additional conformational flexibility, kinetics, and the protein-protein interactions of 

additional effectors. Yet, despite these limitations, Resistor is able to prioritize mutations 

that are demonstrated to confer resistance in patients. Specifically, our results show that 

detailed and combinatorial thermodynamic computations can form the basis for 



 

60 

predicting escape mutations to TKIs. In the future, since some resistance mutations 

exploit kinetic phenomena, kinetics could be incorporated for a more comprehensive 

model. 

2.4 Conclusions 

Resistor contributes to the science of predicting resistance mutations by providing 

an algorithm to enumerate the entire Pareto frontier of multiple resistance-causing 

criteria. By categorizing predicted resistance mutations by their Pareto rank, it allows the 

drug discovery community to prioritize escape mutations on the Pareto frontier. Resistor 

also provides structural justification for the mechanism of each predicted escape mutation 

by generating an ensemble of predicted structural models upon mutation. In this study, 

we have applied Resistor to predict resistance mutations in EGFR and BRAF for several 

different therapeutics. We demonstrate that Resistor can also be applied to 

computationally generated input structures, although the accuracy of the results may be 

somewhat diminished compared with experimentally determined structures of target-

ligand complexes. However, computationally derived models can still provide useful 

insights, especially when considering that the availability of experimental structures 

appears as a major bottleneck. Although Resistor as described herein optimizes over 4 

objectives, as a general method, any number of diverse objectives could be added. 

Resistor can be applied not only to cancer therapeutics but also to antimicrobial or 

antiviral drug design. It is our hope that the drug discovery community can use Resistor 

to design drugs that are less prone to resistance. 
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3 DexDesign: A new OSPREY-based algorithm for 
designing de novo D-peptide inhibitors 

In this chapter I present DexDesign, a novel OSPREY-based algorithm for 

computationally designing de novo D-peptide inhibitors. The work in this chapter was 

carried out in collaboration with Henry Childs, Pei Zhou, and Bruce R. Donald. We have 

written a manuscript which is currently under review. This chapter is based on that 

manuscript: 

 

 Guerin, N., Childs, H., Zhou, P., and Donald, B.R. DexDesign: A new 

OSPREY-based algorithm for designing de novo D-peptide inhibitors. 

Submitted to journal, under review. 

 

Like the development of the Resistor algorithm (described in Chapter 2), the 

research presented in this chapter was carried out in a highly collaborative fashion. Pei 

and Bruce initially conceived of the idea of using MASTER57, geometric reflections, and 

the K* algorithm to generate de novo D-peptide binders. I explored the feasibility of 

implementing a D-amino acid conformation library in OSPREY and selected the initial 

set of PDZ-domains interactions to aim to disrupt, CFTR:CALP and PTEN:MAST2, with 

de novo D-peptide inhibitors. After confirming both theoretically and empirically the 

equivariance of OSPREY's energy function to geometric transformations like reflection, 

translation, and rotation, I extended Jeff Martin's recent conformation space work124 and 

added D-amino acid molecular preparation and design capabilities to OSPREY. In 
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autumn 2022 we were fortunate to be able to recruit chemistry PhD student (and Donald 

Lab member) Henry to the project to help with running the DexDesign predictions.  

Over the year that we worked on DexDesign, we refined and improved the 

algorithm (Section 3.2.1), formulated new and generally useful computational protein and 

peptides design techniques (Section 3.2.3.1), an developed a number of different methods 

to structurally and computationally assess the DexDesign-generated D-peptide inhibitors 

(Sections 3.3.1 and 3.4.1). Notably, by the end of this highly iterative process, we had 

used DexDesign to generate a set of 30 de novo D-peptides inhibitors, each predicted to 

bind its PDZ domain target (CALP or MAST2) tighter than the target's endogenous 

ligand (CFTR or PTEN, respectively)—an important prerequisite of an effective 

therapeutic.  

3.1 Background and Introduction 

Since the 1921 discovery125 of the peptide hormone insulin to treat diabetes, many 

peptides and peptide-derived therapeutics have come into clinical use, with more than 30 

achieving final regulatory approval just since the year 2000126. The use of peptides as 

therapeutics has a number of advantages, including standard protocols for synthesis, good 

efficacy, high potency, and selectivity51,52. On the other hand, peptide therapeutics have a 

number of drawbacks, including poor stability, oral bioavailibility, membrane 

permeability, and retention51. The substitution of D- for L-amino acids in peptides is one 

strategy medicinal chemists have used to address these shortcomings. 

In Section 3.1.1, we describe the benefits of incorporating D-amino acids into 

therapeutic peptides. Section 3.1.2 provides background on PDZ domains in general and 

two PDZ domains in particular that researchers have investigated targeting with L-



 

63 

peptides for biomedical purposes. Section 3.1.3 describes previous computational protein 

redesign software and algorithms for designing proteins and peptides incorporating non-

canonical and D-amino acids. Section 3.1.4 concludes with a summary of DexDesign, a 

new algorithm we developed and incorporated into the protein design software OSPREY.  

With the necessary background covered, the rest of this chapter focuses on an 

application of the DexDesign algorithm to generate de novo D-peptide inhibitors of two 

biomedically important PDZ domains targets: CAL and MAST2. We then evaluate each 

computationally generated peptide using multiple structural criteria, including predicted 

binding affinity and whether a D-peptide mimics binding interactions previously shown 

to be important to L-peptide binding to PDZ domains.  

3.1.1 Benefits of including D-amino acids in peptides 

The inclusion of D-amino acids can increase peptide stability by decreasing the 

substrate recognition by proteolytic enzymes53. For example, Chen et al. improved both 

stability and binding affinity of a bicyclic peptide inhibitor of the cancer-related protease 

urokinase-type plasminogen activator by substituting a single D-serine for a glycine54,55. 

Haugaard-Kedström et al. observed that the simple substitution of D-amino acids in two 

positions of their de novo PDZ domain inhibitor greatly improved metabolic stability by 

increasing their peptide’s half-life 24-fold56. More ambitious uses of D-amino acids have 

also been performed. Liu et al. constructed an entirely D-peptide inhibitor of the MDM2 

oncoprotein using mirror image phage display, an experimental technique used to 

discover D-peptide drug candidates, that inhibited growth of glioblastoma both in cell 

culture and nude mouse xenograph models127. Nevertheless, the challenge of preparing an 
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enantiomeric protein target for mirror image phage display remains a drug-discovery 

bottleneck128. 

3.1.2 PDZ domains 

With over 270 unique occurrences in more than 150 human proteins, PDZ 

domains constitute the largest family of peptide-recognition domains in the human 

genome129. A typical PDZ domain has 80-100 amino acids folded into five core β-strands 

(β1-β5) and two α-helices (α1 and α2)129–131. They facilitate a variety of cellular 

functions, such as modulating polarization, signaling, and trafficking pathways, through 

interaction with short linear motifs (SLiMs) located at the C-terminus of their 

ligands129,132–134. Usually SLiMs bind into a groove of the PDZ domain between α2 and 

β2, extending the β2/β3 sheet132. Modulating the interaction between a SLiM and its PDZ 

binding partner is a strategy that both viruses and therapeutics aim to exploit129,135 and 

has been explored by previous computational design techniques23,136–143. 

3.1.2.1 CFTR-associated ligand 

Cystic fibrosis can cause serious pulmonary and respiratory problems in the lungs 

by causing the development of a thick mucus that promotes bacterial infection and 

inflammation. It is caused by many mutations in the cystic fibrosis transmembrane 

conductance regulator (CFTR), such as ΔF508, which causes destabilized, misfolded 

CFTR23,144. The CFTR-associated ligand (CAL) binds CFTR via CAL’s PDZ domain 

(CALP), which shepherds CFTR through rapid degradation via a lysosomal pathway23. A 

number of research groups have developed peptide stabilizers that bind to CALP, 

preventing CFTR lysosomal trafficking and degradation. Our lab used computational 

peptide design to develop a hexamer that bound 170-fold more tightly to CALP than 
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CALP bound the CFTR C-terminus, rescuing CFTR activity in monolayers of polarized 

human upper airway epithelial cells that contain the ΔF508 deletion in CFTR—80% of 

cystic fibrosis patients are homozygous for this mutation22,23. Cyclic peptides targeting 

CALP have also been developed—Dougherty et al. developed a highly selective 

stabilizing cyclic peptide that binds CALP with a KD of 6 nM144.  Competitive peptide 

inhibitors have also been developed with the goal of developing new methods of 

managing neurological disease. 

3.1.2.2 MAST2 

During viral infection, the rabies virus exploits SLiM/PDZ-domain interactions to 

further its propogation145,146. In a neuron, phosphatase and tensin homolog deleted on 

chromosome 10 (PTEN)’s SLiM interacts with the PDZ domain of microtubule-

associated serine-threonine kinase 2 (MAST2) to regulate pathways inhibiting neuronal 

survival, regrowth, and regeneration147,148. The rabies virus glycoprotein’s C-terminal 

residues interact with MAST2’s PDZ domain, disrupting the ability of MAST2 and 

PTEN to form a complex and inhibit neurite outgrowth and apoptosis145,148,149. 

Recognizing the therapeutic potential of promoting neurite outgrowth in the treatment of 

neurodegenerative disease, Khan et al. developed three peptides that mimic and improve 

upon the rabies virus glycoproteins’s interaction with MAST2’s PDZ domain, stimulating 

neurite outgrowth in proportion to the affinity the peptide bound MAST2148. 

In Section 3.3, we present 30 de novo D-peptide inhibitors targeting CALP and 

MAST2. 
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3.1.3 Computational tools and algorithms for designing D-peptides 

OSPREY is a free and open-source software program containing a suite of 

computational protein design algorithms developed in our lab35. OSPREY has been used 

to, among other things, predict resistance mutations ablating efficacy of antibiotics used 

to treat methicillin-resistant Staphylococcus Aureus29,72 and small molecule inhibitors 

used to treat melanoma, lung, stomach and colorectal cancers28,30, design and structurally 

characterize peptide inhibitors of CALP for treating CFTR22,23, and improve broadly 

neutralizing antibodies against HIV-134,150. OSPREY has been used to computationally 

redesign proteins with canonical and non-canonical amino acids21,23,24,151, as well as 

optimize protein:small molecule interactions28,30,31, but as-of-yet has not had the 

capability to design D-peptides. Given the promising biomedical potential of D-

peptides127,152–156, having the ability to apply OSPREY’s ensemble-based, provable 

protein design algorithms in pursuit of D-peptide design could greatly decrease the 

required quantity of expensive, time-intensive experiments. 

There are a few previous computational techniques for D-peptide design (also 

reviewed in Donald 2011, Chapter 9)46. One of the earliest was by Elkin et al., which 

used the Multiple Copy Simultaneous Search157 method to predict candidate D-peptide 

inhibitors of hepatitis delta antigen dimerization158. Recent versions of Rosetta have 

included functionality to incorporate non-canonical and D-amino acids159,160. Philip 

Kim’s group has developed a computational D-peptide design technique based on 

creating a mirror image of the PDB, identifying hotspot interactions, and searching the D-

PDB for similar configurations of hotspot residues161,162. They applied this technique to 

develop two D-peptide inhibitors to the SARS-CoV-2 spike protein receptor binding 
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domain and the human angiotensin-converting enzyme 2 (ACE2) that mimic the ACE2 

α1-binding helix163,164. Overall, the number of algorithms the protein designer has 

available for D-peptide design is notably sparser than for L-design, and the development 

of additional computational protocols for this important task is warranted. 

3.1.4 DexDesign 

In this chapter we present a new computational protocol, DexDesign, for 

designing de novo D-peptides in OSPREY. DexDesign constructs D-peptide scaffolds by 

mirroring the structure of a L-protein:peptide complex into D-space, then uses the 

geometric search algorithms in MASTER57 to search hundreds of thousands of L-protein 

structures for substructures with backbones similar to the D-peptide. It then uses the 

iMinDEE/K* algorithm17,47 in OSPREY to redesign a scaffold D-peptide's sidechains to 

optimize target binding (see Figure 6). Given the biomedical importance of modulating 

CALP and MAST2 PDZ domain interactions, coupled with the advantages of D-peptide 

therapeutics, we use DexDesign to predict D-peptides inhibitors of these two protein 

targets. 

 

In summary, this chapter makes the following contributions: 

1. A new computational protocol, DexDesign, for designing de novo D-peptide 

binders, 

2. Three novel design techniques leveraging continuous flexibility and the 

computation of ε-accurate ratios of partition functions over molecular ensembles: 

the Minimum Flexible Set, Inverse Alanine Scan, and K*-based Mutational Scan, 



 

68 

3. Application of DexDesign to predict D-peptide binders to the PDZ domains of 

CALP and MAST2, 

4. Multi-criterion computational validation and structural analyses of the 

DexDesign-generated peptides, 

5. OSPREY-generated structural ensembles of the D-peptide:PDZ domain 

complexes, and 

6. An open source implementation of DexDesign in the computational protein 

redesign software OSPREY. 

3.2 Methods 

3.2.1 Algorithm and Computational Protocol 

DexDesign generates de novo D-peptides by combining MASTER’s molecular 

structure search57 with provable computational protein redesign algorithms in 

OSPREY35,46,  mediated via energy-equivariant geometric transformations (EEGT). 

EEGTs, such as translation, rotation, or reflection, are geometric transformations of a 

molecular structure that do not affect the energy of that structure. Each EEGT 

corresponds to a symmetry in the energy field165. For example, an energy function will 

compute the same energy of protein structure s and s reflected over the Cartesian x-y 

plane. The MASTER algorithm searches a database of protein structures for a user-

specified query structure and is guaranteed to find all protein substructures in the 

database with a backbone RMSD below a cutoff threshold57. The K* algorithm in the 

OSPREY software suite35 searches for amino acid substitutions that maximize a design 

objective, such as binding affinity or specificity17,21,37,38. It does this by exploiting 

molecular ensembles to compute a provably accurate ε-approximation to the binding 
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constant, Ka
17,21 (see Section 1.2.2 on the K* algorithm). In essence, DexDesign invokes 

MASTER search as a subroutine to suggest D-peptide scaffolds with backbone 

conformations similar to their L-peptide counterpart, then invokes K* as a subroutine to 

optimize amino acid sequences and side chain conformations on those scaffolds. 

After preparing a database (DB) of L-protein structures, a protein designer 

initiates DexDesign by identifying a protein target (t) of interest, for which there exists a 

structure of a protein or peptide (p) bound to t. In MASTER terminology, the structure of 

this bound complex will become our query, qtp. Below, we define terms used in the 

DexDesign algorithm: 

 

1. Let 𝑠𝑛 be a protein structure with n residues. We define substructure 𝑠𝑖,𝑗 of 𝑠, 

where 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, to be a structure of residues i through j of s.  

2. Let 𝑟(𝑠, 𝑎) be a function that reflects all atoms in protein structure 𝑠 across a 

plane 𝑎. Without loss of generality, we let 𝑎 be the x-y plane and define 𝑟(𝑠) =

𝑟(𝑠, 𝑎) henceforth. We note that r is an involution, i.e., 𝑟(𝑟(𝑠)) = 𝑠. 

3. Let 𝑀(𝐷𝐵, 𝑠, 𝑐) be the MASTER subroutine. 𝑀 returns a set of substructures 

from DB with backbone RMSD, when optimally aligned with protein substructure 

s, less than c Å.  

4. Let 𝒪(𝑝, 𝑡) be the OSPREY K* subroutine. 𝒪 redesigns peptide p towards 

increased binding affinity with protein target t by searching over mutated and 

continuously minimized amino acid sidechains, and returns a set of mutant 

sequences (and structural molecular ensembles) derived from p that have 

improved binding with t.  
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The DexDesign algorithm is described in Figure 6 and Figure 7. 



 

71 

 

Figure 6: Example of the DexDesign protocol applied to CALP. (A) The potent inhibitor kCAL01 (in 

pink) bound to CALP (in cyan) (PDB ID 6ov7)22 is used as a starting point for a DexDesign search for a 

D-peptide inhibitor of CALP. Both kCAL01 and CALP are composed of solely L-amino acids. (B) The input 

structure is reflected to produce a mirror-image of the kCAL01:CALP complex, which flips the chirality of 

all amino acids to D. (C) The complex is split into its constituent peptide and protein components. (D) 

Residues P0 to P-5, which are the residues located within CALP's binding pocket, are used as the query 

structure to conduct a MASTER57 search of a large database of L-protein structure to find substructures with 

similar backbones (as determined by backbone RMSD) to the D-version of kCAL01. 10 representative 

matches of L-peptide segments (in multicolored wire representation) are overlaid on the pink stick D-version 

of kCAL01. (E) Each L-peptide match is aligned to the D-version of kCAL01 in the D-kCAL01:CALP 

complex structure and D-kCAL01 is removed. Shown (in purple sticks) is an L-peptide substructure 

GGAASG (residues 168-173) that MASTER identified in Mycobacterium tuberculosis Rv0098 (PDB ID 

2pfc)166. This L-peptide forms the basis for OSPREY redesign. (F) The L-peptide:D-CALP complex is 

reflected once again to form a D-peptide:L-CALP complex. The K* algorithm21,47 in OSPREY35 is then 

invoked to conduct a search over D-peptide sequences and continuous sidechain conformations to optimize 

the D-peptide for binding. K* identified two mutations at positions P0 and P-2 predicted to improve binding 

of the peptide with a normalized ΔΔG of -1.4 kcal/mol, improving KD by 9-fold (see Appendix B.1 for 

information on the normalization procedure). Position P0 is mutated from Gly to Trp, and P-2 is mutated from 

Ala to Arg. Shown is an OSPREY-predicted low energy ensemble of the D-peptide GGARSW with 

MolProbity probe dots167–169 showing goodness-of-fit the OSPREY-predicted mutated D-sidechains make 

with CALP.  
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Figure 7: The DexDesign Algorithm. It takes as input a query structure (q) of a bound target (t) and peptide 

(p), a database (DB) of L-protein structures, and a cutoff (c). Line 1 reflects the L-protein complex into D-

space. Line 2 splits the target and peptide into two structures, the D-target (dT) and the D-peptide (dP). Line 

3 calls MASTER57 (M) to search the L-protein database for all substructures with a backbone RMSD to dP 

less than c. The set of results is saved in LM. Line 4 reflects each MASTER peptide (lP) and D-target (dT), to 

make a D-version of lP bound to the original L-target. OSPREY35 K* redesign21,47 is then run on each 

target:peptide complex (lT + dP), resulting in a set of K* scores (K*), along with an OSPREY-predicted 

structural ensemble of the D-peptide (dP) and L-target (lT) complexes, with the sequence and continuously 

minimized sidechains of dP optimized to bind lT. The K* scores and computed structural ensembles are 

returned on Line 5. 

 

3.2.2 New features in OSPREY 

3.2.2.1 New feature: customize existing or add new conformation libraries 

In previous works25,26,28,30,170, a typical OSPREY-based computational protein 

redesign entailed 1) selecting a starting molecular structure, 2) adding hydrogens, 3) 

specifying the design algorithm and its input parameters, 4) running the algorithm, and 5) 

analyzing the results. To enable Step 4, OSPREY included a default library of amino acid 

atom connectivity templates from Amber171 and rotamers from Lovell et al49. These 

templates and rotamers then became starting points for continuous minimization within a 

voxel during the sequence and computational search17,172. Embedding the templates 
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within the algorithm provided protein designers with simple defaults for the majority of 

protein redesign problems. And while some works19,150,151 have expanded these defaults 

in certain cases, such as in our use of non-canonical amino acids to design CALP 

inhibitors151, the necessity of providing a simple, general approach that enabled protein 

designers to experiment with diverse and novel biochemical building blocks remained. 

The implementation of a general, in contrast to application-specific, approach to 

modeling templates and flexibility enables designers to design proteins with chemistries 

that the creators of the protein design software didn't even anticipate! 

To meet this need, we have simplified the process of specifying rotamers, voxel-

based continuous minimization, new molecular fragment templates, or even entire 

conformation libraries in OSPREY. OSPREY continues to provide intelligent defaults, 

but they are moved from deep within the software and are now exposed to the designer, 

allowing the designer to modify them as needed in a simple graphical user interface (see 

Figure 8, right). This seemingly simple change has profound implications for OSPREY. 

When the complete conformation space specification (i.e., the design parameters such as 

the mutable residues, the flexible residues, etc. See Section 3.2.3.2 for further definition) 

is a user-modifiable input to the algorithm, new classes of design capabilities, such as 

design with D-amino acids via DexDesign, are unlocked. 
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Figure 8: Screenshots of new OSPREY protein design specification options. OSPREY35 now allows 

protein designers to add their own conformation libraries and easily control rotamer selections and allowed 

movements. Left: DexDesign includes, in addition to the standard L-conformation library, a D-conformation 

library that is the mirror image of the L-library. A conformation library describes the standard connectivity 

templates, rotamers, and allowed movements, all of which can be further customized by the protein designer. 

A protein designer can specify multiple, distinct conformation libraries per chain. Right: New detailed control 

over side chain conformational flexibility. Each of the conformation library rotamers (e.g., tptm, pttm, etc.) 

can be included or excluded. The angle of voxel in which OSPREY continuously minimizes a rotamer47 can 

now be set, and each dihedral angle can be included or excluded from the continuous minimization. OSPREY 

provides the protein designer with complete control of the definition of the conformation space. This control 

enables the designer to explore new types of conformation spaces, such as the D-peptide space. 

3.2.2.2 New feature: D-protein/peptide design 

The molecular interaction forces between two molecules are invariant over a 

reflection of those two molecules. Put another way, if 𝐾𝐷(𝑥, 𝑦) is the dissociation 

constant for protein x binding protein y, then 𝐾𝐷(𝑥, 𝑦) = 𝐾𝐷(𝑟(𝑥), 𝑟(𝑦)). The OSPREY 

energy function, as described in detail in previous works35,47,124,173, mimics this physics 

precisely be being (exactly) energy equivariant with respect to reflection, allowing us to 

add the ability to design D-proteins and peptides in OSPREY. We accomplished this by 

reflecting OSPREY's default L-conformation library into D-space. A protein designer can 

now use the functionality described in Section 3.2.2.1 to specify a D- or L-conformation 

library on a per-protein basis (see Figure 8, left). DexDesign requires this capability 
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because designing a D-peptide targeting an L-protein requires the use of both D- and L-

conformation libraries. 

3.2.3 Applying DexDesign to CALP and MAST2 

To use DexDesign to predict de novo D-peptide inhibitors to CALP and MAST2, we 

started with structures of their bound complexes: kCAL01 bound to CALP (PDB ID 

6ov7)22 and PTEN bound to MAST2 (PDB ID 2kyl)174. We created a database of high-

resolution L-protein structures by mining the RCSB PDB175 for crystallographically 

determined structures with a resolution better than 2.5 Å, omitting DNA, RNA, and small 

molecules. This resulted in a database containing 119,160 structures (see Figure 16 on 

page 151 for further description of the composition of the database). Using the 

DexDesign algorithm in Figure 7, we first reflected each molecular structure to D-space 

and split the peptide and target PDZ domain into two separate structures, dp and dt, 

respectively. We then used the MASTER algorithm57 to query the database for L-protein 

substructures with backbones similar to dp. MASTER returns a set of candidate L-

peptides (LM), each of which (lp ∈ LM) we superimposed over dp in the dp:dt complex and 

subsequently removed dp. We then again reflect each bound complex lp:dt, resulting in a 

de novo D-peptide candidate 𝑟(𝑙𝑝) bound to the original L-protein target 𝑟(𝑑𝑡) in a 

complex 𝑟(𝑙𝑝):𝑟(𝑑𝑡). 

Prior to executing Step 4 of the DexDesign algorithm (K* redesign; see Figure 7) we 

further pruned the set of D-peptide candidates based on two additional criteria. First, we 

visualized candidate D-peptide:L-protein complex structures in PyMol176 using 

Molprobity dots167,168 in our lab's Protein Design Plugin169 to evaluate the number and 

severity of steric clashes, as steric clashes need to be resolved via sequence mutation and 
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additional modeling of continuous side chain flexibility in the K* algorithm. Since clash 

resolution and peptide improvement via K* redesign utilize the same algorithmic 

technique and therefore draw from the same pool of limited computational resources, we 

chose to prioritize D-peptide candidates with fewer clashes so we could allocate more 

computational resources to improving a D-peptide candidate via K* sequence redesign. 

Second, we observed instances where MASTER found identical D-peptide candidate 

sequences with nearly identical structures in multiple distinct PDB files, which we 

resolved by removing the duplicate results. 

Using the above criteria, we selected 8 promising D-peptide candidates to use as 

starting points for OSPREY K* redesign. We call these selected candidates D-peptide 

redesign (DPR) scaffolds. The complete set of DPR scaffolds is described in Table 11 on 

page 147. To evaluate and improve upon the DPR scaffolds, we developed three new 

design techniques. 

3.2.3.1 New Design Techniques: Minimum Flexible Set, Inverse Alanine Scanning, 

and Mutational Scanning 

DexDesign's de novo peptide design has one important distinction from protein 

redesign: the model of the starting protein structure used as input for K* redesign is a 

theoretical model, rather than one determined by experiment. As described in Section 

3.1.3, OSPREY's algorithms have been successfully applied to a large and diverse set of 

biomedical applications. Yet in the most common uses of the K*-family of algorithms, 

viz., those provably approximating Ka (K*17,21, BBK*38, MARK*37, and EWAK*24), the 

protein designer starts a redesign to achieve a specific redesign goal (e.g., improving or 

ablating binding of a protein to a ligand) from an experimentally determined structure of 
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the protein:ligand complex. The mere existence of this experimental structure provides a 

solid foundation upon which further redesign builds, i.e., the given protein and ligand 

bind at least in vitro, and at least to some degree. Unfortunately, we do not have this 

luxury when designing de novo peptides to bind a given protein target. For example, 

while DexDesign uses the backbones of known L-peptide binders as input to the 

algorithm, the resulting DPR scaffolds are sufficiently different in sequence, side chain 

conformation, and chirality that the protein designer should assume that their DPR 

scaffold will not bind its protein target in vitro without further optimization via K*. To 

address this challenge—which is inherent to de novo design—we have developed new 

design techniques that systematically evaluate the quality of DPR scaffolds and 

rigorously suggest mutations that are predicted to improve the D-peptide's binding 

affinity to its target PDZ domain. 

The following design techniques assume that the protein designer has a fixed 

amount of time and computational resources at their disposal. To that end, they are 

formulated to allow designers to rapidly evaluate their DPR scaffolds by restraining the 

conformation space to the minimal size necessary to computationally evaluate a 

hypothesis. Conformation space size grows exponentially with the number of flexible 

residues. Here, restricting the size of a conformation space is an effective technique to 

obtaining computational predictions quickly. 

3.2.3.2 Design Technique 1: Identifying a Minimum Flexible Set 

The K* algorithm in OSPREY predicts a provable approximation to Ka by 

calculating provable bounds on the partition function values of three molecular 

ensembles: the protein:ligand complex, the apo protein, and the apo ligand17,21. To 
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generate these low-energy ensembles, the K* algorithm enumerates a stream of 

conformations in order of increasing energy, stopping only when it reaches a point when 

its enumerated conformations are sufficient to calculate a provably good ε-approximation 

to the partition function value, and thus the K* score. The set of conformations that K* 

enumerates is determined entirely by its conformation space, or the combinatorial set of 

all conformations that can be generated from given flexibility rules. Examples of such 

rules include the number of side chain rotamers an amino acid can explore, and the 

degree of continuous rotational flexibility permitted for a dihedral angle. The 

conformation space is in turn specified by the protein designer as an input to the K* 

algorithm (see Figure 8). While specifying an appropriate conformation space has always 

been an important factor in K*'s ability to find mutations that accomplish a protein 

design's goal, specifying a sufficiently efficient, but still expressive, conformation space 

is an essential prerequisite of DPR scaffold redesign. 

The MASTER search in Step 3 of the DexDesign algorithm (see Figure 7) returns 

a set of L-peptides with low backbone RMSD to the D-peptide query. Due to the fact the 

MASTER search is by backbone-only RMSD, it is often the case that the L-peptide 

search results have side chains in sterically unfavorable positions that clash with the D-

protein target. As discussed in Section 3.2.3, we prune DPR candidate peptides that cause 

many unfavorable clashes. On the other hand, we keep DPR candidate peptides with only 

a few small clashes because these clashes can typically be resolved with an appropriately 

specified conformation space. We call the set of residues that the protein designer must 

specify to be continuously flexible to resolve these clashes the Minimum Flexible Set. 
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The Minimum Flexible Set is different for each DPR scaffold, since the D-peptide 

in each DPR scaffold is unique. Given a fixed budget of computational resources, protein 

designers should prefer DPR scaffolds requiring smaller Minimum Flexible Sets, since 

such DPR scaffolds allow K* to expend more compute resources on searching for 

favorable mutations that increase binding to the target protein. See Figure 9 (A) for an 

example of specifying the Minimum Flexible Set for a CALP-DPR candidate. 
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Figure 9: Illustration of the Minimum Flexible Set and Inverse Alanine Scanning design techniques 

applied to CALP-DPR5. (A) Choosing the Minimum Flexible Set. The CALP-DPR5 scaffold peptide (in 

cyan) is extracted from a crystal structure of the tobacco necrosis virus (PDB ID 1c8n, residues C61-66, 

AGGFVT)177. When aligned and superimposed over the query peptide kCAL01 and CALP22 (in green) to 

create the DPR scaffold, sidechain and backbone clashes are present that the designer must address (red and 

pink MolProbity dots)167–169. The four peptide residues that clash with CALP are located at P0 (Thr), P-1 (Val), 

P-2 (Phe), and P-5 (Ala). We specify the Minimum Flexible Set, or those residues that must be allowed to 

undergo continuous minimization (see Gainza et al, 2012)47 in all designs derived from CALP-DPR5, as the 

peptide residues located at P0, P-1, and P-2. The peptide:CALP clash involving the alanine located at P-5 can 

be resolved by allowing OSPREY to translate and rotate the peptide during K* optimization, an option now 

available to the protein designer in the process of specifying a redesign's conformation space (related to 

Figure 8). (B and C) The Inverse Alanine Scanning applied to CALP-DPR5. Complementing the Minimum 

Flexible Set technique, Inverse Alanine Scanning addresses peptide:target clashes by mutating all peptide 

residues modulo a single amino acid to alanine. In (B and C), we focus on position P-1 (Val) and use K* to 

mutate all other peptide residues to alanine, as well as to continuously minimize peptide:target sidechain 

conformations. (B) Inverse Alanine Scanning structural prediction with the source amino type, valine. As 

expected, the clashes present in CALP-DPR5 (A) vanish in the Inverse Alanine Scanning peptide (as 

indicated by the lack of red and pink MolProbity dots). Furthermore, K* has rotated P-1 (Val) to point towards 

the peptide's C-term, indicating that conformation is preferable. With this rotation, P-1 (Val) remains within 

CALP's hydrophobic pocket. (C) An OSPREY-predicted ensemble of the result of the Inverse Alanine Scan 

mutating position P-1 to methionine. CALP V345 and I295 form favorable van der Waals interactions (green 

and blue MolProbity dots) with multiple conformations of P-1 (Met), which is also reflected in the increase 

in K* score of P-1 (Met) compared to P-1 (Val). This result indicates that further K* binding affinity 

optimization can include methionine at P-1, and that V345 and I295 should be allowed to flex continuously 

in CALP-DPR5 design candidates containing mutations at P-1. 

3.2.3.3 Design Technique 2: Inverse Alanine Scanning 

Inverse Alanine Scanning is a technique complementary to the Minimum Flexible 

Set. Whereas the Minimum Flexible Set technique identifies a conformation space that 

resolves all clashes, Inverse Alanine Scanning allows the designer to investigate single 

residue mutations on the peptide that may increase binding to the target protein only 

when the target protein's nearby residues are provided sufficient flexibility in the 
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conformation space. In contrast with Minimal Flexible Set, this technique resolves the 

problem of clashes between DPR scaffolds and the protein target by mutating all peptide 

residues, modulo the single residue under investigation, to alanine. We call this Inverse 

Alanine Scanning because this computational technique mutates all the peptide's residues 

except the residue of interest to alanine, the opposite of the canonical alanine scanning 

experiment. See Figure 9 (B & C) for a picture of this technique. 

Notably, Inverse Alanine Scanning not only provides evidence as to which 

residues in the target protein must be flexible to accommodate certain favorable 

mutations, but it also provides evidence about which protein residues can safely remain 

rigid because they do not interact with peptide mutations in their vicinity. In the former 

case, a protein designer can visually inspect the OSPREY-generated structural ensemble 

of a favorable mutant to determine the set of residues which flexed and interacted with 

the mutated sidechains: these residues must remain flexible in the final conformation 

space. Conversely, when Inverse Alanine Scanning identifies a favorable mutant that, 

upon visual inspection of the OSPREY-generated structural ensembles, has residues that 

do not flex, then these residues can safely be omitted from the final conformation space. 

This knowledge is valuable because it allows the designer to specify a smaller 

conformational space than they otherwise would in the next technique, K*-based 

Mutational Scanning. 

3.2.3.4 Design Technique 3: K*-based Mutational Scanning 

After learning which residues must flex from Minimum Flexible Set and 

obtaining hints as to which mutations might improve binding from Inverse Alanine 

Scanning, the K*-based Mutational Scanning technique (hereafter Mutational Scan) can 
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be used. A Mutational Scan uses K* to systematically mutate a residue in the DPR 

scaffold to all 20 amino acids. We specified a K* design implementing a Mutational Scan 

for each residue in a DPR peptide and set the conformation space as the union of the set 

of flexible residues from the Minimum Flexible Set and the Inverse Alanine Scanning 

steps. 

We ran K* Mutational Scans on each of the DPR scaffolds. In many cases we 

observed mutations that notably improved the K* score. We then used the results of the 

Mutational Scans to inform the specification of additional K* designs that permitted 

multiple simultaneous peptide mutations in order to optimize peptide:target binding. We 

then further refined that set by removing sequences whose increase in K* score was 

driven primarily by peptide destabilization, as indicated by a large decrease in the 

unbound peptide's partition function value qL (see Section 1.2.2 on the K* algorithm). We 

then sorted the remaining favorable DPR sequences by their K* score. Finally, we 

analyzed the OSPREY-predicted structures of the top 3 sequences for each DPR scaffold. 

Our analysis is included below. 

3.3 Results 

3.3.1 DPR validation criteria 

The aim of DexDesign is to predict novel D-peptides inhibitors. For this reason, 

we validated each of the DPR peptides across multiple criteria relevant to PDZ domain 

inhibitors. These criteria include: 

1. The DPR's binding affinity. As an effective inhibitor must interact with its 

protein target in such a way that it disrupts the target protein's ability to bind its 

endogenous ligand, to validate the inhibitory potential of the D-peptides we 
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compared their K* scores to the K* scores of each PDZ-domain's endogenous 

ligand, as well as some previous L-peptide inhibitors. We use the K* 

algorithm17,21 to optimize the D-peptide's sequence to increase binding affinity 

between the peptide and the endogenous ligand's binding site (the groove between 

α2 and β2 in the PDZ domain). See Section 1.2.2 for a definition of K* scores and 

how they are generated by the K* algorithm. 

2. The DPR's ability to replicate biophysical facets common to PDZ domain 

binding. Due to their central role in regulating cellular trafficking and signaling 

pathways129, much research has been conducted to better understand and 

characterize PDZ domains129–134,145,178–180. This research has identified structural 

and biophysical elements that are commonly found facilitating canonical PDZ 

domain interactions134. One such element is the presence of a hydrogen bond 

network formed between the peptide's C-terminal carboxylate and the loop 

connecting β1 and β2, termed the carboxylate binding loop (CBL)130,134,181. 

Another is the presence of β-strand-β-strand interactions between the peptide and 

β2133,134. A third commonality is the presence of a hydrophobic pocket in the α2-

β2 groove, which canonically is filled by a hydrophobic residue at position P0 in 

the peptide133, and in some peptides, by the P-2 residue134.  

 

We assessed the following biophysical facets in our validation of D-peptides: 1) 

the H-bond network formed by the D-peptide carboxylate and the CBL; 2) 

β-strand interactions between the D-peptide backbone and β2, and; 3) the ability 

of the D-peptide to fill the hydrophobic pocket. We believe these facets to be 
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sufficient, but not necessary, in the development of novel D-peptide inhibitors 

(see Section 3.4.1 for additional information on this point). 

3. The presence of novel and favorable interactions in the DPR. Our validation 

includes a structural analysis of the OSPREY-predicted low-energy ensemble of 

the DPR bound to its target PDZ domain. Since DexDesign predicts de novo 

D-peptides, and since empirical structures of D-peptide inhibitors bound to PDZ 

domains are lacking, it is possible that a D-peptide could bind its target PDZ 

domain in a mode quite distinct from that of canonical L-peptides. For example, 

L-peptide residues at positions that point into the PDZ domain's binding groove 

may, in a D-peptide, point away (and vice-versa, see Figure 17 on page 152 for an 

example), providing the possibility for some peptide residues to interact with parts 

of the PDZ domain in ways not formerly possible. To account for the possibility 

of novel modes of binding (and not, e.g., disregard D-peptides that fail to replicate 

all the criteria listed in 2), we analyzed the OSPREY-predicted low-energy 

molecular ensembles of the DPR bound to its target PDZ domain. In these 

analyses, we highlight the presence (or absence) of notable structural features 

capable of further validating the quality of the DPRs. 

3.3.2 Designed inhibitors targeting CALP 

Using our crystal structure of kCAL01 bound to CALP (PDB ID 6ov7)22, we used 

DexDesign to generate 5 DPR scaffolds: CALP-DPR[1-5] (see Table 11 on page 147 for 

further information about the DPR scaffolds). We then applied the design techniques and 

selection procedures from Section 3.2.3.1 to optimize the DPRs, thereby obtaining a final 

set of 15 D-peptide CALP inhibitors, CALP-PEP[1-15]. We assessed each of the CALP-
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PEPs using the quantitative and structural validation criteria described in Section 3.3.1. 

We also compared the CALP-PEPs to CALP's endogenous ligand (CFTR) and also to the 

most binding-efficient L-peptide CALP inhibitor, kCAL01, which our group reported in 

201223 and solved a crystal structure of in 201922. An overview of each of the CALP-

PEP's K* scores, CBL H-bonds, and peptide:β2 backbone H-bonds is shown in Figure 

10. Notably, each of the CALP-PEPs is predicted to bind CALP tighter than the CFTR 

C-terminal SLiM, a critical prerequisite of an effective inhibitor. After normalization (see 

Appendix B.1 for information on the normalization procedure) and conversion to Gibbs 

free energy, the top 3 peptides, CALP-PEP9, CALP-PEP4, and CALP-PEP5, when 

compared to the CFTR C-terminus, have a ΔG of 2.3, 2.3, and 2.1 kcal/mol lower than 

the CFTR C-terminus (CALP-PEP9: ΔG = -6.9 kcal/mol, CALP-PEP4: ΔG = -6.9 

kcal/mol, CALP-PEP5: ΔG = -6.7 kcal/mol, CFTR C-terminus: ΔG = -4.6 kcal/mol), 

improving KD over the CFTR C-terminus by 46-, 44-, and 33-fold, respectively. Below, 

we provide the results and analyze the OSPREY-predicted structural ensembles. 

K* redesign of the peptide sequence enabled each of the CALP-PEPs to achieve a 

tighter binding affinity to CALP when compared to the DPR scaffold from which it was 

generated. This is indicated by their positive log10 ΔK* score (see Table 12). Notably, the 

CALP-PEPs ΔK* scores strongly correlate with their K* scores (Spearman correlation = 

0.95). We postulate this strong correlation indicates that DexDesign's K* optimization is 

not merely alleviating clashes in the DPR scaffolds, but that it is also identifying peptide 

sequences forming novel side chain interactions that increase binding affinity. For 

example, CALP-PEP9's P-2 arginine reaches across β2 and makes favorable contacts with 

β3's Glu309 (see Figure 11, D). The magnitude of the predicted improvement in binding 
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ranges from ΔΔG = -2.0 kcal/mol for CALP-PEP15 to -3.5 kcal/mol for CALP-PEP9. 

Next, we validated the CALP-PEPs based on their ability to replicate canonical PDZ 

domain binding motifs. 

The three canonical PDZ domain binding motifs we used as criteria to further 

validate the CALP-PEPs were: 1) the presence of an H-bond network between the 

peptide's C-terminal carboxylate and the CBL; 2) the presence of peptide:β2 backbone 

interactions; and 3) whether the D-peptide filled the hydrophobic pocket typically filled 

by P0 in L-peptides. To quantify (1), we counted the number of H-bonds formed between 

the peptide's C-terminal carboxylate and the CBL, and to quantify (2) we counted the 

number of H-bonds between the peptide and β2 backbones. We used visual inspection 

with MolProbity Probe Dots167,168 in our lab's Protein Design Plugin169 to perform a 

binary classification for (3), more specifically, we classified the hydrophobic pocket as 

filled if a D-peptide's sidechain contacted the residues within the pocket. As a point of 

reference, kCAL01 and the CFTR C-terminal SliM each have 3 H-bonds with the CBL, 3 

H-bonds between the peptide and β2 backbone, and fill CALP's hydrophobic pocket their 

P0 amino acid (valine for kCAL01, leucine for CFTR C-terminal SliM). 

9 of the 15 CALP-PEPs (CALP-PEP[4-12]) had 2 or more H-bonds between their 

C-terminal carboxylate with the CBL. CALP-PEPs derived from the CALP-DPR1 and 

CALP-DPR5 scaffolds had 1 (or in the case of CALP-PEP1 and CALP-PEP3, 0) H-

bonds. Encouragingly, all the CALP-PEPs formed at least 2 backbone H-bonds with 

CALP's β2 strand (see Figure 10 and Table 12). CALP-PEP9, which we predict to be the 

tightest binder to CALP, forms 3 C-terminal carboxylate H-bonds with the CBL and 3 

backbone H-bonds with CALP's β2 strand, matching the numbers formed by both the 
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CFTR C-terminal SliM and kCAL01 (see Figure 11). CALP-PEP9 contains arginines at 

position P-2 and P−5, both of which are predicted to make favorable van der Waals 

contacts with CALP (see Figure 11, B&D). In addition, CALP-PEP's P-2 guanidino group 

is predicted to form an H-bond with CALP’s S294 and a salt bridge with E309, and P-5 

H-bonds with CALP's E300 and H301 (Figure 11, B&D). While it does not appear that 

the quantity of CBL and backbone H-bonds drives the predicted strength of binding of 

CALP-PEPs (see Figure 10), the CBL does play an important role in determining peptide 

specificity129, therefore we regard evaluation of D-peptide:PDZ domain H-bonds as 

necessary components of a larger ensemble of criteria. 

In contrast, whether a CALP-PEP fills CALP's hydrophobic pocket is important 

to designing a tight binder. All the CALP-PEPs saw an increase in their K* scores when 

they mutated P-1 to an amino acid capable of filling the pocket (see Table 12 on page 

148). 11 of the 15 CALP-PEPs mutate P-1 to histidine, 3 of the 15 to phenylalanine, and 

CALP-PEP15 is unique with methionine. For example, the mutation to histidine at P-1 in 

CALP-PEP9 fills and favorably interacts with multiple residues in the hydrophobic 

binding pocket (see Figure 11, C). 
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Figure 10: Quantitative and Structural Analysis of the CALP-PEPs, kCAL01, and the CFTR C-

terminal SliM. The OSPREY-predicted binding affinity (log10 K* score) of the tightest known peptide binder 

of CALP (kCAL01, PDB ID 6ov7)22, the CALP-PEPs, and CALP's endogenous ligand (the CFTR C-terminal 

SliM, PDB ID 2lob)182 show (blue bars) that the CALP-PEPs are predicted to bind more tightly, with log10 

K* scores ranging from 18.7 (CALP-PEP15) to 26.1 (CALP-PEP9), than the CFTR C-terminal SliM (log10 

K* score of 16.2). Conversely, the CALP-PEPs are predicted to bind CALP less tightly than the best known 

CALP peptide inhibitor, kCAL0122,23, which OSPREY predicts to have a log10 K* score of 30.4. Since the 

primary objective of a competitive inhibitor is to outcompete an endogenous ligand in binding to the target 

protein, the K* scores, viz. provably accurate ε-approximations to Ka (see Section 1.2.2), of the 15 de novo 

D-peptide CALP-PEPs exceeding that of CFTR's C-terminal SliM indicates that the CALP-PEPs meet their 

fundamental design objective. For example, CALP-PEP9 has a ΔΔG of -2.3 kcal/mol, improving KD 46-fold, 

compared to the CFTR C-terminus (see Appendix B.1). While not predicted to bind as tightly as kCAL01, 

D-peptides have therapeutic advantages over L-peptides, including improved metabolic stability (described 

in Section 3.1.1), that can compensate for not reaching the binding affinity of the strongest CALP peptide 

inhibitor. The red bars show the number of β-strand H-bonds contributing to the common β2-sheet extension 

PDZ-binding motif. The green bars show the number of H-bonds between the peptide's C-terminal 

carboxylate and the CBL. The number of CBL and β-strand H-bonds varies across the CALP-PEPs, but the 

one predicted to bind tightest, CALP-PEP9, has 3 CBL and 3 β-strand H-bonds, the same number CFTR and 

kCAL01 have. The K* scores of the CALP-PEPs and empirical structures were determined using the K* 

algorithm17,21 in OSPREY. Section 1.2.2 provides a definition of the K* algorithm and K* score. The error 

bars on the K* scores show the provable upper- and lower-bound of the K* approximation. The number and 

type of H-bonds between the peptides and CALP were determined using Pymol176. 
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Figure 11: Structural analysis of OSPREY-generated ensemble of CALP-PEP9. Of the 15 CALP-PEPs, 

CALP-PEP9 (RGGRHK) is predicted to be the tightest binder to CALP with a log10 K* score of 26.1, which 

approaches the predicted affinity of the most binding-efficient L-peptide inhibitor kCAL01 (previously 

reported23 by our lab; with a log10 K* score of 30.4), and vastly exceeds the predicted binding affinity of the 

CFTR C-terminal SliM (log10 K* score of 16.2). CALP-PEP9 is predicted to improve KD by 46-fold over the 

CFTR C-term, with a normalized KD of 8.9 μM versus 420 μM183 for the C-terminal SliM (see Appendix  

B.1). (A) CALP-PEP9's P0 carboxylate forms favorable H-bonds with the carboxylate binding loop (CBL: 

G290-I293, GΦ1GΦ2) and strand β2, mimicking canonical PDZ binding interactions134 of L-peptides. (B) 

The amino acid at position P-5 in CALP-PEP9 is arginine. P-5's amino group and sidechain make favorable 

van der Waals contacts, indicated by blue and green MolProbity dots167–169, with CALP's E300 and H301. Its 

guanidino sidechain also forms H-bonds with E300's carboxyl group. (C) In canonical L-peptide's, a PDZ-

domain's hydrophobic pocket is filled by a hydrophobic amino acid at position P0.134 In contrast, all of the 

CALP DPRs fill the pocket with the amino acid at position P−1 (see Figure 17). CALP's hydrophobic pocket, 

defined as the groove between α2 and β2 and involving V345, I295, I293, L291, and L348, is filled by a 

histidine in position P-1. (D) CALP-PEP9's P-2 is arginine, which is predicted to make favorable van der 

Waals contacts, form an H-bond with β2's S294 and a salt bridge with β3's E309. The K* scores and 

additional structural validation of all the CALP-PEPs can be found in Table 12. 
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3.3.3 Designed inhibitors targeting MAST2 

Using an NMR structure of PTEN bound to MAST2 (PDB ID 2kyl)174, we used 

DexDesign to generate 3 DPR scaffolds: MAST2-DPR[1-3] (see Table 11 on page 147). 

From these 3 DPR scaffolds, we used the design techniques described in Section 3.2.3.1 

to generate 15 peptides, MAST2-PEP[1-15]. Figure 12 shows an overview of the 

MAST2-PEPs K* scores and how they compare to MAST2's endogenous ligand PTEN. 

Additional structural information about the MAST2-PEPs, such as which residue fills 

MAST2's hydrophobic cavity, is in Table 13 on page 149. 

PTEN binds MAST2 209-fold tighter than CFTR binds CALP (KD = 1.9 ± 0.05 

µM vs. 420 ± 80 µM)183,184 and binds MAST2 as tightly as the strongest known inhibitor 

of CALP, kCAL01 (KD = 2.3 ± 0.2 µM)23. In other words, to design competitive 

inhibitors of the MAST2:PTEN interaction requires us to design D-peptide inhibitors 

with a better affinity than the tightest known L-peptide inhibitor of CALP. Despite the 

challenge inherent in disrupting the MAST2:PTEN interaction, all the MAST2-PEPs are 

predicted to bind MAST2 with affinities surpassing PTEN (see Figure 12). 

The log10 K* scores of the MAST-PEPs range from a low of 29.4 for MAST2-

PEP9 to a high of 32.7 for MAST2-PEP4. MAST2-PEP4 is the best DexDesign-

generated inhibitor and is predicted to bind MAST2 with a normalized Gibbs free energy 

ΔG of -8.8 kcal/mol, a -1.1 kcal/mol improvement over MAST2:PTEN, resulting in a 5-

fold improvement in KD. In some cases a 5-fold improvement might be considered small, 

but we have previously shown23,34 that differences of this magnitude can have profound 

effects on biological activity. For example, kCAL01 binds only 6-fold tighter than 

previous competing peptides, such as iCAL35, that were discovered via high-throughput 
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SPOT arrays23. However, in ex vivo assays (see Section 3.1.2.1) iCAL35 had non-

significant biological activity23, whereas the 6-fold tighter binding kCAL01 had 

significant biological activity. Since the SLiMs modulate a delicate network of competing 

affinities and specificities129,130,183, 5-7x improvements in affinity (such as that achieved 

by CALP-PEP4) can make the difference between failure and true biological activity. 

The MAST2-PEPs replicate some of the canonical L-peptide PDZ-binding motifs, 

such as the residue in position P0 filling the hydrophobic pocket between the PDZ 

domain's α2 helix and β2 strand. 9 out of 15 MAST2-PEPs have residue P0 filling the 

hydrophobic pocket (see Table 13). This contrasts with the CALP-PEPs, where in all 

cases the residue at position P-1 filled the hydrophobic pocket. In the best predicted 

inhibitor, MAST2-PEP4, the P0 leucine fills MAST2’s hydrophobic cavity formed by 

Tyr17, Phe19, Val77, Ile79, and Leu81 (see Figure 13, C & D). In contrast to PTEN’s P0 

valine, MAST2-PEP4’s P0 leucine forms favorable interactions with all 5 of the cavity’s 

hydrophobic residues. In addition, a rotation of MAST2-PEP4's C-terminal carboxylate 

alleviates a steric clash with the carboxylate binding loop present in the MAST2:PTEN 

complex. 

The MAST2-PEPs also exploit novel geometric features of D-peptides not 

available to their L-counterparts. For example, MAST2-PEP4’s P-3 glutamate makes 

favorable van der Waals contacts with MAST2’s His73 imidazole side chain (see Figure 

13, A). PTEN does not make the analogous interaction, and instead PTEN’s P-3 

isoleucine is oriented towards MAST2’s β2 strand, and the residue nearest to His73 is a 

glutamine at P-4, whose amide fails to make van der Waals contacts with His73 (see 

Figure 13, B). The creation of novel favorable interactions with MAST2 is common in 
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the designed MAST2-PEPs and compensates for the loss of some of the canonical PDZ-

domain binding motifs. We discuss the trade-offs between replicating canonical 

interactions and finding new modes of binding available to D-peptides in Section 3.4. 
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Figure 12: The DexDesign-generated D-peptides are predicted to bind to MAST2 tighter than PTEN. 

Blue bars show the OSPREY-predicted binding affinity of the MAST-PEPs and PTEN6-Cter (hereafter 

denoted PTEN6, the 6 C-terminal residues of MAST2’s endogenous ligand PTEN). We used the DexDesign 

algorithm (described in Section 3.2.1) and novel design techniques (described in Section 3.2.3.1) to generate 

15 de novo D-peptides predicted by the K* algorithm21,47 to bind MAST2 tighter than PTEN6. Notably, 

PTEN binds MAST2 209-fold tighter than CFTR binds CALP (KD = 1.9 ± 0.05 µM vs. 420 ± 80 µM)183,184, 

and binds MAST2 as tightly as the strongest known inhibitor of CALP, kCAL01 (KD = 2.3 ± 0.2 µM)23, 

indicating a more challenging target of inhibition. OSPREY predicts PTEN6 to bind MAST2 with a log10 K* 

score (a provably accurate ε-approximations to Ka, see Section 1.2.2) of 28.8. Despite the more difficult 

target, all the MAST2-PEPs have higher log10 K* scores than PTEN6, ranging from 29.4 for MAST2-PEP9 

to 32.7 for MAST2-PEP4, meaning the MAST-PEPs are predicted to outcompete PTEN6 and inhibit 

PTEN6:MAST2 binding. The best predicted inhibitor, MAST2-PEP4, has a ΔΔG of -1.1 kcal/mol, improving 

KD 5-fold compared to the PTEN6 (see Appendix B.1).  The K* scores of the MAST2-PEPs and empirical 

structures were determined using the K* algorithm17,21 in OSPREY35. Section 1.2.2 provides a definition of 

the K* algorithm and K* score. The error bars on the K* scores show the provable upper- and lower-bound 

of the K* approximation. 
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3.4 Discussion 

3.4.1 Replication and Restitution: a framework for evaluating de novo 
peptides 

Though the CALP-PEPs and the MAST2-PEPs both target PDZ domains, the 

interactions they make with their respective targets can be generally categorized into one 

of two kinds: replication or restitution. Replication means to replicate interactions 

previously observed in L-peptide inhibitors, for example, in the case of the PDZ domains, 

the β2 strand extension, residue P0 filling the hydrophobic pocket, and the H-bond 

network a peptide's terminal carboxylate makes with the CBL. Restitution, on the other 

hand, refers to the process of compensating for typical L-peptide binding motifs by 

making novel interactions that are now possible to explore due to the change from L- to 

D-chirality of the peptide. Whereas in some cases we achieve improved binding through 

replicating the canonical PDZ interactions, in other cases, due to the special geometric 

properties of D-peptides, we instead observe an increase in binding (restitution) due to 

novel interactions that we observe in the structures that were not available to L-peptides. 

This suggest the intriguing possibility that some peptides may be stabilized by replicating 

native-like interactions from L-peptides, whereas others might be stabilized by forming 

novel interactions, available only to the ligands with D-configuration of peptides. 

In the de novo peptides we generated, both the CALP-PEPs and the MAST2-PEPs 

contained elements both replicating and restituting the binding interactions formed by the 

endogenous L-peptides from which their backbone conformations are derived (see Figure 

6). In general, the CALP-PEPs relied more on a strategy of replication to improve 

binding affinity, whereas the MAST2-PEPs exploited a strategy of restitution. Take for 
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example the SLiM's canonical C-terminal carboxylate H-bond network formed with the 

CBL. Whereas 13 of the 15 CALP-PEPs replicated (to varying degrees, and sometime 

even exceeding the number of) H-bonds formed with the CBL (see Figure 10), the 

MAST2-PEPs' terminal carboxylate tended to have few, if any, H-bonds with the CBL 

(see, e.g., Figure 13 C). We postulate that the reason for the MAST-PEPs' use of 

restitution instead of replication for the CBL H-bond network is that the structure of the 

PTEN:MAST2 complex (PDB ID 2kyl)174 indicates the existence of steric clashes 

between the C-terminal carboxylate and the CBL (see Figure 13 D). When using 

MolProbity167 to evaluate the lowest-energy model of the empirical NMR structure, it 

indicates there is a bad clash (van der Waal radii overlap of 0.518 Å) between PTEN P0 

valine's OXT atom and the HA atom from Lys16 in MAST2's CBL. OSPREY's energy 

function35,47,124,173, which uses continuous sidechain minimization in addition to 

translation and rotation of the peptide to minimize the energy of each conformation 

evaluated by OSPREY's iMinDEE/K* algorithm17,47, pushes and rotates the C-terminal 

carboxylate away from the CBL to alleviate the steric clash (see Figure 13 C), with the 

trade-off being the loss of replication of some of canonical PDZ CBL H-bond 

interactions. 

The CALP-PEPs and MAST2-PEPs also exploit restitution to form novel 

favorable interactions with their target proteins. One type of restitution is the creation of 

favorable new side chain interactions between the peptides and their targets. For example, 

CALP-PEP9's P-2 arginine forms a new H-bond with CALP β2 strand's S294 and a salt 

bridge with β3's E309 (see Figure 11, D) that are absent in the CALP:kCAL01 structure 

(PDB ID 6ov7)22. Interestingly, CFTR's P-1 arginine forms an analogous H-bond with 
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E59 CALP:CFTR structure (PDB ID 2lob)182, providing evidence that this interaction, as 

restituted in CALP-PEP9 (based on the kCAL01 structure lacking this interaction), is 

both plausible and favorable in vitro. The MAST2-PEPs likewise restitute novel 

favorable interactions. For example, MAST2-PEP4's P-3 glutamate makes favorable van 

der Waals contacts with MAST2’s His73 imidazole side chain (see Figure 13 A). In 

contrast, PTEN cannot make some favorable interactions available to MAST2-PEP4. In 

the MAST2:PTEN structure, PTEN's P-3 isoleucine is oriented towards MAST2’s β2 

strand, and the residue nearest to His73 is P-4 is glutamine, whose amide fails to make 

van der Waals contacts with His73 (see Figure 13 B). In the future, we believe that 

designed D-peptide libraries of binders and inhibitors can be characterized as falling on a 

spectrum ranging from replication (1) to restitution (-1) and can be visualized as a per-

residue replication-restitution score ranging from 1 to -1. In this way, the functional 

contributions to binding of de novo peptides could be mapped into a vector space which 

can be visualized or exploited as novel features for machine learning design approaches. 
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Figure 13: MAST2-PEP4 creates novel favorable interactions with MAST2 not found in PTEN. 

MAST2-PEP4 (cyan sticks) is the DexDesign-generated de novo D-peptide predicted to bind MAST2 (green 

cartoon and lines) with the tightest affinity. The K* algorithm21,47 in OSPREY35 predicts MAST2-PEP4 to 

bind MAST2 with a log10 K* score (a provably accurate ε-approximations to Ka, see Section 1.2.2) of 32.7, 

compared to 28.8 for PTEN6 (gray sticks, the 6 C-terminal residues of MAST2’s endogenous ligand PTEN). 

After normalization (see Appendix B.1), the Gibbs free energy change ΔG of the MAST2:MAST2-PEP4 

complex is -8.8 kcal/mol, a -1.1 kcal/mol improvement over MAST2:PTEN6, resulting in a 5-fold 

improvement in KD. (center) The lowest-energy conformation from the OSPREY-predicted conformational 

ensemble of MAST2 (green) bound to MAST2-PTEN6 (cyan) and the lowest-energy model of PTEN6 (grey) 

from an empirical solution NMR ensemble of the MAST2:PTEN complex (PDB ID 2kyl)174. In comparison 

to the binding modes of, e.g., the CALP-PEPs to CALP (see Figure 11) which largely recover canonical 

PDZ-domain binding interactions, MAST2-PEP4 restitutes binding to MAST2 by exploiting novel geometric 

features of D-peptides not available to their L-counterparts (see Section 3.4.1). (A) MAST2-PEP4’s P-3 

glutamate makes favorable van der Waals contacts with MAST2’s His73 imidazole side chain, as indicated 

by predominantly green and blue MolProbity dots167–169. These favorable contacts are absent in the 

MAST2:PTEN6 complex. (B) In contrast to (A), PTEN6 cannot make some favorable interactions available 

to our D-peptides. For example, in MAST2:PTEN6, PTEN6’s P-3 isoleucine is oriented towards MAST2’s 

β2 strand (not shown), and the residue nearest to His73 is P-4 glutamine, whose amide fails to make van der 

Waals contacts with His73. (C) MAST2-PEP4’s P0 leucine fills MAST2’s hydrophobic cavity184 formed by 

Tyr17, Phe19, Val77, Ile79, and Leu81. In contrast to PTEN6’s P0 valine (D), MAST2-PEP4’s P0 leucine 

forms favorable interactions, as indicated by the green and blue MolProbity dots, with all 5 of the cavity’s 

hydrophobic residues. In addition, a rotation of the C-terminal carboxylate alleviates a steric clash (indicated 

by the red and pink MolProbity dots in D) with the carboxylate binding loop present in the MAST2:PTEN6 

complex. 
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3.4.2 Validation of DexDesign scaffold discovery and redesign 

To assess DexDesign, we performed an experiment to measure the ability of 

DexDesign to design a de novo D-peptide similar to a D-peptide found in an empirical 

D-peptide:L-protein complex. In our experiment, we began with the crystal structure of a 

known D-peptide in complex with an L-protein and applied a global reflection to the D-

peptide:L-protein complex. Then, we employed MASTER to search the L-database using 

the resulting, now flipped, L-peptide as the query. The returned L-structures were aligned 

with the reflected complex and reflected once again to produce D-peptide:L-protein 

scaffolds ordered by increasing backbone alignment RMSD. The first, and therefore 

lowest, RMSD backbone alignment was then selected for redesign using OSPREY. We 

then measured the similarities of the redesigned D-peptide to the empirical D-peptide. 

While DexDesign is intended for construction of novel de-novo D-peptides, the capability 

to generate a DPR similar to the D-form empirical structure should validate our redesign 

protocol. 

We selected a crystal structure of the D-amino acid containing peptide 

GyGlanvdessG in complex with streptavidin (PDB ID 5n8j)185. Streptavidin is a 

homotetrameric protein that binds the vitamin biotin with high affinity186, and is therefore 

commonly used in Western blotting and immunoassays187. A monomer of streptavidin 

forms a β barrel, with ligands oriented towards the interior of the barrel. Similar to CBL 

interactions with CALP and MAST2, streptavidin forms favorable hydrogens bonds with 

ligands via a flexible binding loop188. Analogously, streptavidin exhibits hydrophobic 

contributions through inward-facing tryptophan residues of the β barrel189. Therefore, a 

high-affinity ligand should establish hydrogen bonds with the binding loop while 
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orienting hydrophobic residues towards β barrel tryptophans. We selected this system due 

to its comparable D-peptide size and similar chemistry to PDZ domains. 

We sourced the lowest backbone RMSD (0.48 Å) of inverted D-amino acid 

GyGlanvdessG from chain A residues 608 to 616 of ST0929 (PDB ID 3hje)190, a glycol 

transferase. After application of Minimum Flexible Set, Inverse Alanine Scanning, and 

K*-based Mutational Scan to this scaffold (see Section 3.2.3.1), we determined the 

optimal binder, hereafter denoted as DPRV, to have a log10 K* score of 32.8 with the 

sequence WWMIGDWND. This differed slightly from GyGlanvdessG (GLANVDESS), 

which has a log10 K* score of 32.2. The sequence similarity between the two peptides is 

21.43%, a degree of native sequence recovery comparable to reported recovery in popular 

protein design programs such as Rosetta for L-proteins191. This is especially true for 

NMR structures, such as we used in our MAST2 study (see Section 3.3.3). With DPRV, 

we report that DexDesign generates a D-ligand with chemistry unique to the DPR 

scaffold. 

While DexDesign exhibits comparable performance to state-of-the-art methods191, 

native sequence recovery on a short (9 residue) peptide may be a poor indicator of ligand 

binding. For example, a 40% sequence recovery equates to 3.6 residues for our 

redesigned peptide. This is a small number of residues, and likely fails to capture the 

geometric and chemical features that drive high affinity. To investigate the similarities of 

GyGlanvdessG and DPRV, we also report the backbone alignment RMSD of DPRV to 

GyGlanvdessG:streptavidin (0.48 Å), and the geometric, chemical, and biophysical 

properties of our designed peptide that enable binding (see Figure 14). Finally, we report 
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the log10 K* scores computed over molecular ensembles as validation of binding 

competency (above and see Table 14 on page 150). 

We also performed a control experiment wherein we mutated the ST0929 scaffold 

sequence (RYEEGLFNN) directly to the sequence of the D-peptide GyGlanvdessG, 

without using any OSPREY-based techniques such as K*-based Mutational Scan and 

Inverse Alanine Scanning. The purpose of this experiment was to investigate the 

predicted binding of the GyGlanvdessG sequence on the ST0929 scaffold backbone. This 

control experiment produced a log10 K* score of only 26.6, a difference of -5.7 from 

GyGlanvdessG. Interestingly, a 100% wildtype sequence recovery mutant yields lower 

predicted binding despite the selection of a DPR scaffold with the lowest backbone 

RMSD. Therefore, we conclude that the GyGlanvdessG sequence was not recovered by 

the full DexDesign protocol because these novel OSPREY-based design techniques 

would not permit optimal binding on the lowest backbone RMSD scaffold. Instead, the 

DexDesign techniques (as outlined in Section 3.2.3.1) resulted in a novel D-peptide. 

These results highlight the sensitivity of the peptide design to the starting scaffold; even 

similar-appearing scaffolds have different degrees of designability due to geometric 

differences between backbones. Overall, our experiment highlights the utility of 

DexDesign for generation of novel peptides, as opposed to sequence recovery of known 

binders. 

The difference between amino acid composition of the D-amino acid containing 

peptide GyGlanvdessG and the redesigned peptide is likely due to subtle differences in 

scaffold geometry. As shown in Figure 14 and Figure 18, the backbones of D-amino acid 

GyGlanvdessG, DPRV, and the ST0929-sourced peptide scaffold mutated to the 
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endogenous ligand (control) vary at residues important for establishing hydrogen bonds. 

For example, GyGlanvdessG’s Glu7 residue makes hydrogen bonds with residues Asn23 

and Ser27 of streptavidin (Figure 18 A). DPRV’s Trp7, which is shifted 1.9 Å away from 

streptavidin Ser27 in comparison to GyGlanvdessG, does not form either of these 

hydrogen bonds. However, DRPV’s Asp9 facilitates hydrogen bond formation with 

residues Ser45 and Ser52 on streptavidin (Figure 14 B). These residues belong to the 

flexible binding loop, where favorable contacts are crucial for high-affinity binding186. 

The hydrogen bond formed with flexible loop residue Ser52 is unique to DRPV and is 

not present in the ST0929 control experiment or GyGlanvdessG. Therefore, a peptide that 

replicates some characteristics of a known ligand, while restituting novel interactions, 

may be a much more competent binder. 
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Figure 14: Geometric, chemical, and physical properties of DPRV that drive binding to streptavidin. 

(A) Similar to GyGlanvdessG Ala3, DRPV Met610 displays favorable hydrophobic and van der Waals 

contacts with streptavidin Trp79. Streptavidin (green cartoon and lines) displays hydrophobic contributions 

through inward-facing tryptophan residues of the β barrel, which have been reported as important for ligand 

binding189. Favorable van der Waals interactions are shown as green and blue dots between DRPV (cyan) 

Met610 and streptavidin Trp79. GyGlanvdessG (grey) Ala3 also shares similar hydrophobic and van der 

Waals contacts with streptavidin Trp79. (B) Differences in C-terminal orientation and interactions between 

D-peptide GyGlanvdessG:streptavidin and DPRV:streptavidin. Unlike GyGlanvdessG, DRPV’s aspartic 

acid C-terminus makes hydrogen bonds with both streptavidin residues Ser45 and Ser52. However, 

GyGlanvdessG’s C-terminal Ser9 fails to form a hydrogen bond with streptavidin Ser52. Residues number 

Ser45-Ser52 on streptavidin are known to be important for establishing binding of biotin186, so these contacts 

are likely evidence of high-affinity binding of DPRV. 

3.5 Conclusions 

In this chapter, we presented a new algorithm, DexDesign, to computationally 

design de novo D-peptides. In addition, we have presented three new computational 

protein design techniques, the Minimum Flexible Set, Inverse Alanine Scan, and 

K*-based Mutational Scan, that are generally applicable to both D- and L-peptide design. 

The process of developing DexDesign required us to add new capabilities to the 

OSPREY35 protein redesign software, including the ability to add arbitrary conformation 
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libraries. This enables exciting new opportunities for the types of chemistries OSPREY 

can model and the conformations its algorithms can search and optimize. With 

DexDesign we have added a D-amino acid conformation library to OSPREY by 

reflecting the L-version of OSPREY's standard protein conformation library. Future 

designs and algorithms that model non-proteinogenic molecular building blocks, such as 

non-canonical amino acids or small molecule rotamers, are now substantially easier to 

implement. We envision providing additional generally useful standard conformation 

libraries within OSPREY itself in the future, and protein designers with specialized use 

cases can create their own conformation libraries and import them in their design 

specification in a trivial and code-free process. 

We have used DexDesign to generate and optimize 30 de novo D-peptide 

inhibitors for two biomedically important PDZ targets: CALP and MAST2. We used 

provable approximations of binding affinity (see Section 1.2.2) and analyzed the 

OSPREY-predicted low-energy ensembles of the bound D-peptide:target structures to 

assess the quality of the novel peptides. We employed a novel restitution-replication 

framework for analyzing the basis upon which our DexDesign-generated D-peptides 

improved binding compared to their targets’ endogenous ligands. There are many other 

peptide-recognizing PDZ domain targets for which one could use DexDesign to design de 

novo D-peptide inhibitors. Furthermore, DexDesign is not restricted to PDZ-domains, it 

could be applied to design novel antineoplastic, antifungal, or antibiotic D-peptide 

therapeutics. It is a general algorithm applicable to any target for which there exists 

structural models of a peptide:target complex. The structural models can be determined 

experimentally or computationally predicted using machine learning-based algorithms 
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such as AlphaFold13,14, although the accuracy of the results may be somewhat diminished 

compared to experimentally determined structures of ligand-target complexes.  

There are many opportunities for application or extension of DexDesign in future 

work. One possibility could be to develop and incorporate additional computational 

methods of assessing the DexDesigned peptides. Another would be to experimentally 

validate DexDesigned peptides in vitro. Beyond CALP and MAST2, there are many other 

exciting and biomedically relevant protein targets for which DexDesign could be an 

enabling algorithm for the development of novel D-peptide therapeutics. Thus, 

DexDesign provides an important tool to the drug discovery community interested in 

therapeutic design.
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4 Conclusion 

In this thesis, I have focused on two biomedically relevant topics: predicting drug 

resistance and de novo D-peptide design. Drug resistance is a pernicious problem. One of 

the most underappreciated aspects of living in a wealthy country in the 21st century is 

easy access to basic medications like antibiotics when suffering from, for example, a 

urinary tract infection. Yet one needs to travel back in time only about a hundred years to 

encounter a world where a urinary tract infection could be deadly. At present we might 

take the efficacy of antibiotics for granted, but it does not take a particularly strong 

imagination to envision a future in which widespread antimicrobial resistance renders our 

current slate of antibiotics ineffective. Such a future may be closer than we think: 

antimicrobial resistance is currently a global public health threat contributing to over 5 

million deaths a year63.  

It is not just bacteria that evolve to beat the drugs meant to kill them; fungi192 and 

viruses67,193,194 do, too. Even our own body's cells can develop resistance to drugs we 

may need to take to keep us alive64–66. Acquired resistance to antineoplastics is 

unfortunately a common problem for many cancer patients. If we were able to predict 

how cancers, bacteria, fungi, and viruses will develop resistance to a drug, we might be 

able to redesign the drug to be less prone to resistance.  

In Chapter 2 and Appendix C, we presented Resistor, a novel algorithm that 

combines structure and sequence data to predict resistance mutations. Resistor computes 

the Pareto frontier of four resistance-causing criteria: the change in binding affinity (ΔKa) 

of the (1) drug and (2) endogenous ligand upon a protein's mutation; (3) the probability a 

mutation will occur based on empirically derived mutational signatures; and (4) the 
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cardinality of mutations comprising a hotspot. To validate Resistor, we applied it to 

kinase inhibitors targeting EGFR and BRAF in lung adenocarcinoma and melanoma. 

Resistor correctly identified eight clinically significant EGFR resistance mutations, 

including the “gatekeeper” T790M mutation to erlotinib and gefitinib and five known 

resistance mutations to osimertinib. Furthermore, Resistor predictions are consistent with 

sensitivity data on BRAF inhibitors from both retrospective and prospective experiments 

using the KinCon biosensor technology60–62. 

One can think of the Resistor as an algorithmic reduction of an extremely difficult 

biological problem, namely the act of predicting evolution—the evolutionary 

mechanisms by which a particular cancer cell population, in order to survive, develops 

resistance to therapeutics—to a standard application of protein design algorithms and 

multi-objective optimization. Given the largely positive results Resistor achieved with 

retrospective and prospective experimental validation (Sections 2.2.10 and 2.2.11), this 

reduction appears to be appropriate, at least in the case of resistance via  escape mutation. 

Together with our earlier work on resistance in the infectious disease space29,72, our 

reduction of resistance caused by escape mutation to a provable combination of negative 

and positive protein design represents the first systematic attempt to computationally 

predict resistance mutations at scale based on geometric and physical reasoning, and 

represents a major step forward towards showing that it is possible to predict, using 

principled and provable algorithms, certain types of evolution on the computer.   

Resistance prediction in oncology brings with it unique challenges. In cancer, the 

exact same protein with the exact same mutations may have a different resistance profile 

depending on the tissue in which it is located (e.g., liver versus lung) or a different type 
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of cancer (e.g., lung adenocarcinoma versus colorectal cancer). These are factors we did 

not have to consider in our previous work predicting antimicrobial resistance29,72. To 

account for this, Resistor follows Kaserer and Blagg's example28 and incorporates 

mutational signatures81,82 into the reduction paradigm outlined above. Mutational 

signatures are “echoes” of mutational processes occurring within the cell81 for which we 

lack biophysical and structural information. In the future we would like to obtain the 

relevant structural and mechanistic information summarized by the mutational signatures 

to be able to model the mutational process as molecules and forces, though until then, due 

to the special nature of cancers (as compared to bacteria and viruses), Resistor will 

continue to use the signatures as proxies for the underlying mutational process.  

As mentioned above, our lab previously used positive and negative K* design to 

predict resistance mutations to propargyl-linked antifolates in dihydrofolate reductase 

from Staphylococcus aureus29, which we later confirmed in vivo29,77. Our collaborator 

Teresa (who is also an author of Resistor) subsequently extended this work by 

incorporating mutational signatures81,82 and hotspot scores into a sequential 

computational workflow to predict prospective resistance mutations to small molecule 

inhibitors of KIT, EGFR, Abl, and ALK28. 

Resistor improves upon these previous methods by using multi-objective 

optimization to provide a view of the entire resistance landscape. Resistor incorporates 

the same four criteria as Teresa's earlier work28. In contrast to the previous protocol 

(which analyzed potential resistance mutations in the top three hotspots, ranked by reIP)28 

Resistor uses Pareto optimization over the four axes to calculate a Pareto rank for each 

potential resistance mutation. Ranks provide a mechanism by which a medicinal chemist 
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can prioritize investigation without filtering out potentially important resistance 

mutations that may not be in one of the top three hotspots. This is a critical distinction—

for example, the most common resistance mutation in EGFR encountered in the clinic is 

T790M, and if we had only looked at the top three hotspots we would have missed this 

important resistance mutation as it's in the 5th-ranked hotspot (see Table 4). In contrast, 

Resistor correctly placed it on the Pareto frontier (see Table 1). 

In addition, we developed a new graph-based algorithm (Figure 2) for calculating 

and assigning cancer-specific mutational probabilities to each potential resistance 

mutation. We also developed new YAML OSPREY design file specifications that enable 

code-free use of Resistor and OSPREY for users who prefer not to write code (see Figure 

22 and Figure 23 on page 175 for an example). And to facilitate dissemination and 

scientific reproducibility, we have provided detailed step-by-step instructions for the 

entire protocol, in which we demonstrate using Resistor to predict ERK2 resistance 

mutations to the inhibitor SCH772984 (Appendix C). 

 

In Chapter 3, we introduced DexDesign, a novel algorithm for computationally 

designing de novo D-peptide inhibitors. DexDesign leverages three novel techniques that 

are broadly applicable to computational protein design: the Minimum Flexible Set, 

K*-based Mutational Scan, and Inverse Alanine Scan. In Section 3.3 we applied these 

techniques and DexDesign to generate novel D-peptide inhibitors of two biomedically 

important PDZ domain targets: CALP and MAST2. Section 3.4.1 introduced a new 

framework for analyzing de novo peptides—evaluation along a replication/restitution 

axis—which we applied to the DexDesigned D-peptides. Notably, the peptides we 
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generated are predicted to bind their targets tighter than their targets' endogenous ligands, 

validating the peptides' potential as lead therapeutic candidates. 

I wrote a lot of open source software to enable the research described in the 

previous paragraph. For example, I wrote programs that generated D-peptide:L-protein 

complexes from MASTER's57 search results. As we would often obtain thousands or tens 

of thousands of matches of varying quality, it was infeasible for us to analyze the results 

manually. So, I wrote a program that processed and computed statistics over all the 

results in one go. We were interested in statistics such as solvent accessible surface area 

and the full backbone RMSD to the query structure.  

To add the ability to design with D-amino acids in OSPREY, I added and 

modified many OSPREY components. For example, many of the steps necessary for 

preparing a molecule for design, such as bond identification, protonation, minimization, 

and others, rely on Amber171 programs which, through trial-and-error, I discovered not to 

be invariant to chirality. I solved problems in this class by reflecting the D-structure into 

L-space, invoked the relevant Amber program with the L-peptide as its argument, and 

then again reflected the peptide back into D-space for further molecular preparation in 

OSPREY. To support minimization of D-proteins and peptides in OSPREY, I added the 

ff14SB forcefield195, which Professor Carlos Simmerling of Stony Brook (the forcefield's 

author) confirmed to me is invariant to chirality. I created a D-conformation library, 

which contains definitions of molecular fragments pertaining to all amino acid types and 

the Richardsons' rotamer library49, by reflecting OSPREY's standard L-conformation 

library. Lastly, I added the ability to set a per-chain chirality to the OSPREY user 
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interface, so that when a user sets a residue's mutations and rotamers they are set with 

templates of the correct chirality.  

 

Finally, below I share some reflections I have made during the process of carrying 

out the research described above. In a sense, these are lessons I wish I had known earlier 

in my graduate career, as many of them were learned the hard way—by expending time 

and energy on pursuits that were ultimately unfruitful. It is my hope that sharing these 

reflections will enable future computer scientists or computational biologists to learn 

from my mistakes and avoid making the same ones. 

4.1 Successful Computational Protein Design Requires 
Knowledge of Algorithms, Biochemistry, and Engineering 

Imagine, for a moment, a world where thanks to infinite resources computers 

never crash; combinatorial, #P-hard algorithms completed instantaneously; proteins were 

trivially modeled in solvent with unlimited flexibility; and energy functions 

instantaneously and accurately calculated the integral of a protein's energy over time. In 

this world, the job of a protein designer is easy: they would choose the best provably 

accurate algorithm to model a protein in silico (as computational complexity is 

irrelevant), model each residue backbone, sidechain, and individual atoms as infinitely 

flexible and bathed in explicit solvent (as this has no additional cost), and integrate a 

continuous Boltzmann distribution over every possible sequence. In this imaginary world, 

the protein designer would not need to understand algorithmic complexity, to make trade-

offs in choosing the type and requisite accuracy (and thus cost) of different biophysical 
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models, or to use simplified energy functions for computational tractability. In essence, 

there would be no hard choices. 

Back in our world, computers have limited resources and sometimes crash, 

#P-hard algorithms often take a long time to complete, and computational costs increase 

with improved modeling accuracy of the biophysics and energetics. In our reality, the job 

of a protein designer is nothing if not making hard choices between competing modeling 

priorities. One typical choice a protein designer must make is between a provable and 

stochastic protein design algorithm (described in Section 1.2.1). The designer knows that 

provable algorithms are more reliable but might wonder if their predictions will be ready 

by an experimental collaborator's deadline. On the other hand, they are confident the 

stochastic algorithm will complete in time but wonder how the collaborator might react if 

none of its predictions match their experimental data. It is in making these types of 

choices that a designer's knowledge of algorithms, biochemistry, and engineering 

provides a useful framework with which to provide reliable answers in the required 

timeframe. 

I learned the utility of understanding all three pillars of this framework through 

experience. As a computer scientist, I had a firm grasp on the algorithms but was less 

fluent in biochemistry. For these reasons, my initial approach to computational protein 

design was to implement a generalized protein design protocol that could be used to 

redesign any system. For example, one such protocol was to run the K* algorithm (see 

Section 1.2.2) over sequences I generated by mutating all pairs of residues within an 

enzyme's active site while setting all residues within 4 Å of a mutable residue to be 

continuously flexible. While this often resulted in a large conformation space and 
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consequently design runs which would not finish, I was relieved of making difficult 

choices about the design, choices that to make correctly I would have had to better 

understand the biochemistry and interaction mechanisms of the redesign target. Like a 

typical computer scientist, I developed a system that did the hard work for me.  

While these protocols generated an enormous number of computational 

predictions, I soon discovered (by sharing them with my biochemist collaborator) that 

few were of practical use. For example, I suggested mutating the antimicrobial peptide 

thanatin's -hairpin loop or disulfide bridge, both of which I later learned are 

destabilizing mutations196. At times, when asked for predictions that interested my 

collaborators, the best answer I could give was that the designs were enqueued for 

execution, waiting behind hundreds of other designs to run first. In other words, my 

protocol-based approach to redesign prioritized predictions that those who best 

understood the redesign target considered unimportant!  

This experience taught me a few valuable lessons: 

1. There is no substitute for biochemical knowledge about a redesign target. 

Grokking a target allows the designer to prioritize sequence modifications at 

locations already known to be important. In addition, knowledge of which 

residues are unimportant allows you to investigate them later (or skip them). 

2. In a collaboration, it is useful to generate and share predictions quickly, even 

if they are imperfect. I consider such preliminary predictions "drafts". There 

are two main benefits of sharing draft predictions:  

a. In highly technical fields it is common for miscommunications to occur 

among people with different expertise. Sharing draft predictions early and 
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often reduces the probability the designer will waste time in pursuit of a 

misinterpreted design goal. 

b. Collaborators will likely have useful ideas for how to improve your 

designs, enabling the generation of fruitful results quicker. 

3. Always assess the OSPREY-generated low-energy molecular ensembles upon 

completion of a computational prediction. The designer should be able to 

formulate a hypothesis with structural justification to explain numeric 

predictions. 

There is also an important aspect of engineering in protein design, in the sense 

that the protein designer needs to know which metaphorical knobs to turn achieve a 

desired result. For example, an engineer recognizes that the choice we presented at the 

beginning of this section about choosing between a provable and slow or stochastic and 

fast design algorithm presented a false dichotomy. Provable algorithms execute quickly 

by, e.g., reducing the size of the sequence and conformation space, loosening the bounds 

of the prediction, or using a faster, yet still provable, algorithm. 

Once the immediate need for predictions subsides, the protein designer might 

consider what kind of theoretical advances, such as by finding tractable but sufficiently 

accurate subproblems in the vein of BWM*118, could attack provable algorithms’ lower 

bounds. While achieving algorithmic and modeling breakthroughs is not guaranteed, and 

any hypothesis that asserts a modeling simplification provides sufficient accuracy would 

need to be validated against experimental data, such breakthroughs are extremely 

valuable. They might arise through observations that, e.g., bounds on subtrees of 

conformation space are more useful than bounds on an individual conformation (as in the 
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case of MARK*)37, or that for certain types of designs only a certain energy window is 

useful (as in FRIES/EWAK*)24. Inspiration might also be found from biochemical 

insights gained through collaborations. 

4.2 Machine Learning's Impact on Protein Design 

 It is now clear that the era of machine learning (ML)-based approaches to protein 

structure determination197,198, structure prediction13,14,199–201, and design201–209 has arrived, 

heralded by the shockingly good performance of DeepMind AlphaFold's protein structure 

prediction at CASP13210. Confirming that AlphaFold's performance was not a one-off 

fluke, DeepMind two years later released AlphaFold213,14, which was able to predict the 

3D-structure of a protein from sequence alone to near experimental accuracy211. Not to be 

left behind, companies not traditionally involved in biomedical research, like Meta and 

Salesforce, leveraged their strengths in AI and large language models to develop 

applications for single-sequence protein structure prediction200 and the generation of 

protein sequences with predictable functions201. The leaps in performance afforded by 

ML-based methods have left some wondering about the uncertain role physics-based 

methods for protein structure determination and design will play in the future212. 

 My hypothesis is that ML-based protein design methods will continue to improve 

in capabilities and accuracy, therefore it will behoove the computer scientists and protein 

designers of tomorrow to understand these methods and be able to apply them to tasks 

which they were trained for. Yet, at least in the foreseeable future, there are certain 

protein design tasks for which physics-based methods will likely retain the upper hand. 

To perform well, ML models need large amounts of data on which to train. In cases 

where available training data is sparse, such as empirical models of protein complexes, 
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even state-of-the-art ML models such as AlphaFold-Multimer perform noticeably poorer 

than their single-chain versions213. Whereas our lab has previously shown24,35 that the K* 

algorithm in OSPREY can predict the effect of variants on protein binding with a 

Spearman (ranking) correlation coefficient of > 0.75 (and also provides the PAStE 

algorithm214 designed for this very task), a recent study by Pak et al.215 examining 

whether AlphaFold could predict the effect a single point mutation has on a protein's 

stability (ΔΔG) found weak to no correlation. This is unsurprising, as the AlphaFold FAQ 

itself disclaims the ability to predict the effect of mutations216. Pak et al. conclude that, 

due to the relative scarcity of experimental ΔΔG values, it is unlikely a ML-based ΔΔG 

predictor will be able to obtain a predictive accuracy that outperforms a much simpler, 

template-based approach215,217.  

 Another design task for which there exists almost no empirical data (and relevant 

to Chapter 3) is structures of D-peptides bound to L-proteins. Thus, for the same reasons 

as described in the previous paragraph, it is unlikely that an ML-based approach will 

obsolete the physics-based DexDesign algorithm soon. On the other hand, if large 

amounts of D-peptide:L-protein experimental data is one day made available, I would 

expect that ML-based approaches could be successfully applied to de novo D-peptide 

binder design. 

4.3 Science and Software 

The contemporary research process is increasingly reliant on computing (i.e., 

software) to make inferences and predictions. Yet attention and allocation of funding has 

not yet caught up to software’s growing importance in research218. Writing software that 

is 1) legible, 2) correct, 3) maintainable, and 4) reusable is difficult, and the skills 
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required to achieve these are different than those typically honed for research. In 

academia, there is scant reward (such as increased funding) for writing good software, 

and consequently software is often treated as an afterthought, or something to do only to 

produce results for publications. Yet well-written software pays dividends by accelerating 

future research and enabling scientific reproducibility. 

Well-written software can accelerate future research because it is reusable, 

allowing its incorporation into future applications. Reusability is often attained by having 

a sufficiently modular piece of code (i.e., mostly self-contained) at the right level of 

abstraction (i.e., the provided interface and functions are only those needed to accomplish 

the code’s purpose). The right level of abstraction also has the advantageous quality of 

permitting future users of the code to not have to understand the details of how a module 

is implemented, which facilitates adoption and reuse. Reuse allows the future scientist to 

focus on the novel aspects of their research. 

Legibility is important, as software written to be read by others facilitates third-

party review and verification. This code review process, much like the scientific peer-

review process, makes the resulting code more likely to be correct. Industry learned this 

lesson long ago, where code peer review is common practice. Factors that contribute to 

code legibility include descriptive function and variable names, standard code formatting, 

adequate use of white space, standard use of library functions, and others, as reviewed in 

Martin (2008)219. Legibility also facilitates maintainability by making it easier for others 

to contribute to the software.  

Legibility, correctness, maintainability, and reusability contribute to higher 

quality of software and, importantly, enable scientific reproducibility. Software that is 
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easy to use will be used, allowing reproduction of previous results, whereas few will use 

software that is difficult and indecipherable. As researchers, we should want others to 

validate our results, which means that we need to provide them with software they can 

use easily.  

Unfortunately, there is no shortcut to learning to write good software. Much like 

learning to write in general, one must read much and write more. One method is to 

collaborate on a software project with more experienced engineers and scientists who are 

known to write quality software. It will take time, but it is worth it. 
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Appendix A: More Details on Applying Resistor to 
Predict Resistance Mutations in EGFR and BRAF 

This appendix includes additional information and data relevant to our 

presentation of the Resistor algorithm in Chapter 2. It is adapted from the following 

publication:  

 

Guerin, N., Feichtner, A., Stefan, E., Kaserer, T. & Donald, B. R. Resistor: an 

algorithm for predicting resistance mutations via Pareto optimization over 

multistate protein design and mutational signatures. Cell Systems 13, 830-843.e3 

(2022). 

 

A.1 Preparation of empirical and docked structures for K* 
predictions 

The crystal structures used for the EGFR predictions were adopted from Kaserer 

and Blagg28. A full description of the PDB entries used can be found in that article’s 

Table S7, and details on how the structures were prepared for OSPREY predictions is in 

that article's section “Structure Selection and Preparation.” 

For BRAF, the crystal structures of vemurafenib (PDB ID 3og7)99 and dabrafenib 

(PDB ID 4xv2)98 in complex with BRAF V600E were selected as input for Resistor. Both 

structures have been prepared using the default setting of the Protein Preparation 

Wizard220 in Maestro221. In the case of encorafenib and PLX8394, crystal structures of 

structurally closely related, but not the identical, molecules were available. Teresa used 

those experimental complexes to generate encorafenib and PLX8394 models. 
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Encorafenib was docked into PDB ID 4xv398 using the default settings of the induced fit 

docking procedure in Maestro221–224. For validation, the co-crystallized ligand PLX7922 

was re-docked. The highest scored docking pose of encorafenib was selected for further 

investigation. We found that the conserved substructures in encorafenib and PLX7922 

aligned very well in this docking pose. 

For PLX8394, re-docking of the co-crystallized ligand PLX7904 (PDB ID 

4xv1)98 failed with the induced fit docking procedure but was successful using a rigid 

docking workflow in GOLD version 5.8.0225. The binding site was defined as 6 Å around 

the ligand and the water molecule HOH905 was set to toggle and spin. The default 

settings of all other parameters were used. 

An experimental structure of the endogenous ligand ADP was available, however, 

BRAF adopted in inactive conformation in this complex. Apo BRAF in its active 

conformation (PDB ID 4mne)226 was thus combined with ANP-bound protein kinase c-

src (PDB ID 2src)227 to generate an active, endogenous ligand-bound BRAF complex. 

Teresa used this model as a template to build a BRAF:ADP homology model in the 

Molecular Operating Environment228 using the default settings. This included refinement 

steps to resolve potential steric clashes in the rather crude ANP-BRAF input template. 

As we note in these preceding paragraphs, in each case the BRAF structure we 

modeled was in its active conformation. There are some mutations, such as V600E, that 

are activating mutations and shift BRAF’s conformational probability distribution to the 

active state60,61. With use of Resistor for mutational scanning of single point mutations 

within the active site, we assumed that the mutation is either itself activating or is a 

secondary mutation following an activating mutation, such as V600E. In our discussion 
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of Resistor predictions of the BRAF double mutants V600E/T529M and V600E/T529I in 

Section 2.2.10, our assumption was that the V600E mutation is the activating mutation 

(which the existing drugs are effective against) and T529M/I are the secondary, 

resistance-causing mutations. 

For all complexes, water molecules not involved in mediating interactions 

between the ligand and the target were deleted and only residues with a 12 Å radius 

around the ligand were kept in the final input structures. 

 

A.2 Evaluation of ligand affinity 

The command line interface of OSPREY was used to generate distinct YAML 

design files for each residue within 5 Å of a ligand. These YAML design files specify the 

input structures, the mutable residues, the flexible residues, and connectivity templates 

for OSPREY. To create the forcefield parameters files for the inhibitors and endogenous 

ligands, we used the Antechamber program in the AmberTools software package229. 

Then, to calculate the K* scores we used OSPREY with the following command input: 

where YAML-design-file was replaced with the individual YAML design file and force-

field-modification-file was replaced with the AmberTools-generated file. The YAML 

design and forcefield modification files used in this study are available in the Harvard 

Dataverse. 

> osprey affinity --design YAML-design-file \ 
    --epsilon 0.63 --frcmod force-field-modification-file \ 
    --stability-threshold -1 
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A.3 Luciferase PCA analyses 

Our collaborators Stefan Eduard and Andreas Feichtner, for the purpose of testing 

my computational predictions30, transiently overexpressed indicated versions of the Rluc-

PCA–based KinCon biosensors in 24-well plate formats. Experiments were performed 48 

hours post transfection. For the luciferase-PCA measurements, the growth medium was 

carefully removed and the cells were washed with phosphate-buffered saline (PBS). Cell 

suspensions were transferred to 96-well plates and subjected to luminescence analysis 

using the PHERAstar FSX (BMG Labtech). Luciferase luminescence signals were 

integrated for 10 seconds following addition of the Rluc substrate benzyl-coelenterazine 

(NanoLight, #301). Cell lysates were prepared post RLU measurements. Expression 

levels of the biosensor were determined via western blot analysis. 

A.4 Empirical Resistor runtimes 

The Resistor computation entails three stages: 1) computing the positive and 

negative K* designs; 2) assigning mutational signature probabilities to each mutation, 

and; 3) running Pareto optimization over the four axes. Steps 2 and 3 empirically take a 

negligible amount of time (on the order of seconds). Step 1, however, computes two 

partition functions for each sequence and can take more time. Figure 15 shows the 

empirical runtime (in seconds) that it took our computers to run the positive and negative 

K* designs, where a design mutated a residue to each of the 19 other possible amino 

acids. 
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Figure 15: Positive and negative design runtimes. Box-and-whisker plot showing the minimum, 

maximum, median, first quartile, and third quartile runtimes per inhibitor:kinase pair. The whiskers extend 

to points that lie within 1.5 times the interquartile range. Each dot represents the number of seconds that 

Resistor took to compute the positive and negative K* designs for a given mutation location in a 

kinase:inhibitor complex. In other words, each dot represents the computation of 40 K* scores. The 

computation times across all the inhibitors range from 813 to 972,465 s, with the average being 40,630 or 

1,015 s per sequence. The designs were run on a 24-core, 48-thread Intel Xeon processor with 4 Nvidia Titan 

V GPUs. 

A.5 Quantification and statistical analysis 

In Figure 4, the student’s T-test was used to evaluate whether the mean of the 

RLU of a mutant was significantly different from that of the relative DMSO control. The 

SEM was used with n = 4. Significance was defined to three different p-levels, where 

*𝑝 < 0.05, ∗∗𝑝 < 0.01, and ∗∗∗𝑝 < 0.001. 
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To compute the specificity and sensitivity values reported in Section 2.3, we used 

the dataset from Table S1 from from Wagenaar et al62. We then reduced this set to those 

mutants for which Resistor made a prediction (Resistor made predictions for sequences 

with a mutated amino acid within 5 Å of the inhibitor or endogenous ligand). If Resistor 

predicted that a mutation caused resistance and Wagenaar et al. indicated that the mutant 

increased normalized drug enrichment, then that was considered a true positive. If 

Resistor predicted that a mutation was benign and Wagenaar et al. did not find increased 

drug enrichment, then that was considered a true negative. The specificity and sensitivity 

values were computed using their standard formulas. 

 

A.6 Predictive contributions of individual parameters 

Resistor optimizes four criteria, K* positive design, K* negative design, 

mutational probability, and hotspot cardinality. To further investigate the contributions of 

each criterion, we ran a computational ablation study on EGFR resistance to osimertinib. 

We first describe the contributions of the structure- and sequence-based criteria to 

pruning the mutational sequence space. We then describe how we omitted each of the 

four objectives, one-at-a-time, and recomputed each mutant's Pareto rank using the three 

remaining objectives. To disambiguate between Resistor with four criteria and the results 

of this computational ablation study, we denote the latter as 3-RANK. We compared 

Resistor and 3-RANK's results to see whether using 3-RANK could improve the 

predictions. 

Note that 3-RANK is, by nature, an imperfect comparison to Resistor because an 

ablation study should remove each criterion from both the pruning and the ranking steps. 
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As described above, Resistor consists of two components, viz., a pruning and a Pareto-

ranking step. We considered an ablation study where each of the criteria is removed from 

both the pruning and ranking steps. However, by applying the cut-off 𝑐 (described in 

Section 2.2.5), we combine positive and negative design in a nonlinear fashion, and it is 

therefore not possible to remove them individually. In addition, the residue hotspot 

cardinality is a result of the pruning and can thus not be ablated from the pruning. To 

account for these limitations, we describe below first the magnitude of the effect of each 

of the three pruning criteria (the ratio of positive to negative design, loss of wildtype 

clonal fitness, and mutational probability) on the pruning step, and then describe how 

each of the criteria, when ablated solely from the ranking step, affects the ranking step 

(assuming full Resistor pruning has already occurred). 

There were two structure-based pruning criteria, namely the resistance cut-off and 

loss of wildtype clonal fitness via ablated endogenous ligand binding as described in 

Section 2.2.5. These two criteria prune the largest proportion of sequences, accounting 

for the removal of 86.24 ± 3.20% of mutants in the EGFR and BRAF case studies. 

Removing all mutations with a mutational signature-derived probability of zero removes 

an additional 3.5 ± 0.87% of mutants. However, we have applied consecutive filtering 

steps here, and if we look at each parameter in this particular EGFR dataset individually, 

the cut-off 𝑐 alone prunes 51.03 ± 5.97% of mutants, ablated endogenous ligand binding 

prunes 37.20 ± 6.18% of mutants, and mutations with a mutational probability of zero 

alone prunes 19.21 ± 0.70% of mutants. This shows that the structure-based criteria prune 

the overwhelming majority of the candidate sequences. In this particular 
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EGFR:osimertinib case, post pruning there remain 36 out of the original 357 candidate 

sequences that we then ranked using Pareto optimization. 

In Table 1, we list Resistor's correct predictions for EGFR. There are five correct 

predictions for resistance mutations in EGFR when treated with osimertinib: L792H, 

G796R, G796D, G796C, and G796S. Resistor predicted L792H to be in the second 

Pareto rank and the four mutations at position 796 to be on the Pareto frontier. In 

comparing the Resistor ranks to the 3-RANK results, we found that omitting an objective 

with 3-RANK never improved the predictive accuracy (see Table 3 for the full results). 

 Being clinically confirmed resistance mutations, ideally 5 of the mutants should 

be on the Pareto fronter, i.e., have a Pareto rank of 1. 3-RANK that omits the K* score of 

the EGFR:wildtype ligand complex changed G796C's Pareto rank from 1 to 2, and 

increased the ranks to 3 and 4 respectively of the HIE and HIP protonation states of 

L792H. 3-RANK that omits the K* score of the EGFR:osimertinib complex reduced 

G796D's Pareto rank from 1 to 2, and reduced the HIP, HIE, and HID 792H protonation 

states from a Pareto rank of 2 to 5, 4, and 3, respectively. The largest reduction in rank 

accuracy is when 3-RANK omits mutational probabilities. In this case, L796R, L796D, 

L796C, and L796S have their Pareto ranks reduced from 1 to 2, 5, 6, and 8. The L792H 

mutation, in all protonation states, has its Pareto rank reduced from 2 to 9. On the other 

hand, when 3-RANK omits hotspot cardinality the Pareto ranks of the clinically 

confirmed resistance mutants remain the same. This is not too surprising, as hotspot 

cardinality is a count of the number of amino acids at a particular location that are 

predicted by K* positive and negative design, as well mutational probability, to confer 

resistance. It is thus dependent on the other three criteria, and in essence boosts locations 
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that are predicted to be critical for drug or endogenous ligand binding. This indicates that 

in the future it might be possible to omit hotspot cardinality with only a minor drop in 

predictive accuracy. 

In summary, positive design, negative design, and mutational probability all affect 

the pruning step, with the structural components most aggressively pruning the candidate 

resistance mutations. In the ranking step, the omission of positive design, negative 

design, or mutational probability in the Pareto optimization all negatively impact the 

accuracy of the results. Hotspot cardinality has a smaller effect on the predicted rankings 

than the other three criteria. 
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Table 3: Pareto ranks of computational Pareto objective ablation study on EGFR:osimertinib. Every 

mutation in this table is predicted to confer resistance. “Pos” is the position of the residue.  “WT AA” is the 

wildtype identity of the amino acid. “Mut AA” is the resistance mutation. “Rank” is the Resistor-computed 

Pareto rank. “w/o (+) Design” is the Pareto rank of the mutation when the K* score of the wildtype ligand 

(ATP) is omitted from the Pareto optimization. “w/o (-) Design” is the Pareto rank of the mutation when the 

K* score of the drug (osimertinib) is omitted from the Pareto optimization. “w/o Probs” is the Pareto rank of 

the mutation when the mutational probability is omitted from the Pareto optimization. “w/o Count” is the 

Pareto rank of the mutation when the hotspot cardinality is omitted from the Pareto optimization.

 Pos WT AA Mut AA Rank w/o (+) 
Design 

w/o (-) 
Design 

w/o Probs w/o 
Count 

718 leu TRP 1 2 6 1 2 
718 leu PHE 1 1 6 2 1 
718 leu HIP 1 1 5 3 1 
718 leu HIE 1 2 3 3 1 
718 leu MET 1 1 1 5 1 
719 gly VAL 1 1 1 7 1 
726 val TRP 1 2 2 1 1 
743 ala ASP 1 1 1 6 1 
796 gly TRP 1 1 5 1 2 
796 gly TYR 1 1 2 1 2 
796 gly PHE 1 1 2 2 1 
796 gly LEU 1 2 1 1 1 
796 gly ARG 1 1 1 2 1 
796 gly ASP 1 1 2 5 1 
796 gly CYS 1 2 1 6 1 
796 gly SER 1 1 1 8 1 
718 leu HID 2 3 4 4 2 
718 leu ARG 2 2 2 5 2 
723 phe ILE 2 5 2 3 2 
792 leu HIP 2 2 5 9 2 
792 leu HIE 2 3 4 9 2 
792 leu HID 2 4 3 9 2 
796 gly GLU 2 2 3 3 3 
796 gly HIE 2 3 2 2 2 
796 gly ASN 2 3 3 5 2 
718 leu LYS 3 4 3 8 3 
719 gly THR 3 5 6 6 4 
726 val ARG 3 5 6 6 5 
726 val LYS 3 5 7 7 4 
743 ala GLU 3 4 7 5 3 
796 gly HID 3 4 3 3 3 
796 gly THR 3 4 4 7 3 
844 leu TRP 3 6 6 7 3 
796 gly HIP 4 5 4 4 4 
718 leu GLY 5 6 6 8 5 
743 ala ARG 5 6 8 5 5 
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A.7 All Resistor-predicted resistance mutations 

Table 4: All Resistor resistance mutation predictions for EGFR with erlotinib. “Pos” is the position of the residue. “WT AA” is the wildtype identity of 

the amino acid. “Mut AA” is the resistance mutation. “Sig Prob” is the mutational signature probability for the mutation from “WT AA” to ”Mut AA” in lung 

adenocarcinoma. “ATP WT'” and “ATP Mut” are the K* scores of the endogenous ligand with the wildtype and mutant residues, respectively. “Drug WT” 

and “Drug Mut” are the K* scores of erlotinib with the wildtype and mutant residues, respectively. “Count” is the number of resistance mutations at the 

position. “Rank” is the Pareto rank of the mutation. Note: K* scores are in log10 units where possible and 0 where there is predicted to be no binding.

 Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank 

718 LEU PHE 0.000247 19.05 17.16 25.26 0 8 1 
718 LEU HIP 0.00042 19.05 18.86 25.26 -62.44 8 1 
718 LEU HIE 0.00042 19.05 18.92 25.26 -61.9 8 1 
723 PHE VAL 0.000316 19.06 19.14 25.2 0 5 1 
723 PHE LEU 0.00827 19.06 19.05 25.2 0 5 1 
726 VAL PHE 0.000509 19.04 19.71 25.24 0 2 1 
743 ALA ASP 0.0109 19.14 13.51 25.22 0 4 1 
790 THR LYS 0.00738 19.14 19.54 25.17 22.01 4 1 
790 THR MET 0.00602 19.14 19.79 25.17 23.89 4 1 
791 GLN PRO 0.0023 19.12 19.22 25.19 0 3 1 
791 GLN LYS 0.0163 19.12 19.1 25.19 0 3 1 
796 GLY TRP 2.06E-05 18.99 19.13 25.42 0 12 1 
796 GLY LEU 4.41E-05 18.99 19.55 25.42 -25.46 12 1 
796 GLY GLU 0.000154 18.99 18.88 25.42 1.16 12 1 
796 GLY PHE 0.000176 18.99 19.48 25.42 4.68 12 1 
796 GLY ARG 0.00286 18.99 19.54 25.42 9.36 12 1 
796 GLY ASP 0.00532 18.99 19.15 25.42 18.29 12 1 
796 GLY CYS 0.00384 18.99 19.28 25.42 21.71 12 1 
796 GLY SER 0.00643 18.99 19.23 25.42 22.24 12 1 
718 LEU GLY 8.49E-06 19.05 18.15 25.26 0 8 2 
718 LEU TRP 1.75E-05 19.05 17.96 25.26 0 8 2 
718 LEU HID 0.00042 19.05 18.9 25.26 -60.92 8 2 
718 LEU ARG 0.00238 19.05 19.41 25.26 22.5 8 2 
726 VAL TRP 4.82E-05 19.04 19.51 25.24 0 2 2 
745 LYS ILE 0.000243 18.98 19.05 25.18 0 5 2 
745 LYS MET 0.00516 18.98 18.97 25.18 0 5 2 
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790 THR ARG 0.00139 19.14 19.32 25.17 11.4 4 2 
791 GLN GLY 1.81E-05 19.12 19.06 25.19 0 3 2 
796 GLY TYR 4.34E-05 18.99 19.48 25.42 -13.32 12 2 
796 GLY ASN 5.25E-05 18.99 19.36 25.42 21 12 2 
796 GLY HIE 1.88E-05 18.99 19.55 25.42 23.68 12 2 
800 ASP GLY 0.00153 19.06 19.13 25.21 0 1 2 
718 LEU LYS 0.00027 19.05 19.22 25.26 22.98 8 3 
723 PHE ASP 8.41E-07 19.06 18.98 25.2 0 5 3 
745 LYS HIE 6.76E-05 18.98 18.85 25.18 0 5 3 
745 LYS THR 0.00126 18.98 18.71 25.18 0 5 3 
790 THR ASN 0.000219 19.14 19.16 25.17 21.87 4 3 
793 MET ASN 0.000104 19.04 18.93 25.16 0 1 3 
796 GLY THR 3.45E-05 18.99 19.28 25.42 16.88 12 3 
844 LEU TRP 1.90E-05 18.99 19.02 25.45 -17.34 4 3 
844 LEU HID 0.00042 18.99 18.8 25.45 22.65 4 3 
844 LEU HIE 0.00042 18.99 18.74 25.45 22.63 4 3 
854 THR ASN 0.000262 19.01 19.09 25.43 21.08 1 3 
723 PHE ALA 5.72E-07 19.06 18.98 25.2 0 5 4 
723 PHE GLY 5.92E-07 19.06 18.91 25.2 0 5 4 
743 ALA CYS 7.34E-05 19.14 14.53 25.22 0 4 4 
743 ALA GLU 7.74E-05 19.14 4.17 25.22 0 4 4 
745 LYS HID 6.76E-05 18.98 18.81 25.18 0 5 4 
844 LEU HIP 0.00042 18.99 18.57 25.45 22.42 4 4 
743 ALA ARG 1.73E-05 19.14 6.55 25.22 0 4 5 
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Table 5: All Resistor resistance mutation predictions for EGFR with gefitinib. “Pos” is the position of the residue. “WT AA” is the wildtype identity of 

the amino acid. “Mut AA” is the resistance mutation. “Sig Prob” is the mutational signature probability for the mutation from “WT AA” to ”Mut AA” in lung 

adenocarcinoma. “ATP WT'” and “ATP Mut” are the K* scores of the endogenous ligand with the wildtype and mutant residues, respectively. “Drug WT” 

and “Drug Mut” are the K* scores of gefitinib with the wildtype and mutant residues, respectively. “Count” is the number of resistance mutations at the 

position. “Rank” is the Pareto rank of the mutation. Note: K* scores are in log10 units where possible and 0 where there is predicted to be no binding.

 Pos WT AA Mut AA Sig Prob ATP WT ATP Mut  Drug WT Drug Mut Count Rank 

718 LEU PHE 0.000247 19.05 17.16 26.94 -23.15 7 1 
718 LEU TRP 1.75E-05 19.05 17.96 26.94 1.76 7 1 
718 LEU HIP 0.00042 19.05 18.86 26.94 4.5 7 1 
718 LEU HID 0.00042 19.05 18.9 26.94 4.92 7 1 
718 LEU HIE 0.00042 19.05 18.92 26.94 4.99 7 1 
718 LEU ARG 0.00238 19.05 19.41 26.94 23.69 7 1 
743 ALA GLU 7.74E-05 19.14 4.17 26.93 -49.27 2 1 
777 LEU HID 0.000281 19.05 19.04 26.86 0 1 1 
790 THR ARG 0.00139 19.14 19.32 26.95 12.73 4 1 
790 THR LYS 0.00738 19.14 19.54 26.95 23.21 4 1 
790 THR MET 0.00602 19.14 19.79 26.95 25.06 4 1 
796 GLY LEU 4.41E-05 18.99 19.55 26.88 22.57 1 1 
844 LEU TRP 1.90E-05 18.99 19.02 26.97 -28.99 4 1 
718 LEU LYS 0.00027 19.05 19.22 26.94 24.45 7 2 
726 VAL PHE 0.000509 19.04 19.71 26.94 25.26 1 2 
743 ALA ARG 1.73E-05 19.14 6.55 26.93 -4.31 2 2 
745 LYS ILE 0.000243 18.98 19.05 26.88 16.99 1 2 
790 THR ASN 0.000219 19.14 19.16 26.95 23.52 4 2 
844 LEU HIP 0.00042 18.99 18.57 26.97 23.69 4 2 
844 LEU HID 0.00042 18.99 18.8 26.97 23.97 4 2 
844 LEU HIE 0.00042 18.99 18.74 26.97 23.94 4 2 
854 THR ASN 0.000262 19.01 19.09 26.98 20.61 1 2 
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Table 6: All Resistor resistance mutation predictions for EGFR with osimertinib. “Pos” is the position of the residue. “WT AA” is the wildtype identity 

of the amino acid. “Mut AA” is the resistance mutation. “Sig Prob” is the mutational signature probability for the mutation from “WT AA” to ”Mut AA” in 

lung adenocarcinoma. “ATP WT'” and “ATP Mut” are the K* scores of the endogenous ligand with the wildtype and mutant residues, respectively. “Drug 

WT” and “Drug Mut” are the K* scores of osimertinib with the wildtype and mutant residues, respectively. “Count” is the number of resistance mutations at 

the position. “Rank” is the Pareto rank of the mutation. Note: K* scores are in log10 units where possible and 0 where there is predicted to be no binding.

 Pos WT AA Mut AA Sig Prob ATP WT ATP Mut  Drug WT Drug Mut Count Rank 

718 LEU TRP 1.75E-05 19.05 17.96 27.51 0 9 1 
718 LEU PHE 0.000247 19.05 17.16 27.51 0 9 1 
718 LEU HIP 0.00042 19.05 18.86 27.51 -38.77 9 1 
718 LEU HIE 0.00042 19.05 18.92 27.51 -38.57 9 1 
718 LEU MET 0.0108 19.05 19.44 27.51 25.52 9 1 
719 GLY VAL 0.017 19.05 14.7 27.5 20.75 2 1 
726 VAL TRP 4.82E-05 19.04 19.51 27.48 0 3 1 
743 ALA ASP 0.0109 19.14 13.51 27.43 17.5 3 1 
796 GLY TRP 2.06E-05 18.99 19.13 27.38 -97.39 14 1 
796 GLY TYR 4.34E-05 18.99 19.48 27.38 -61.59 14 1 
796 GLY PHE 0.000176 18.99 19.48 27.38 -41.78 14 1 
796 GLY LEU 4.41E-05 18.99 19.55 27.38 -3.75 14 1 
796 GLY ARG 0.00286 18.99 19.54 27.38 10.61 14 1 
796 GLY ASP 0.00532 18.99 19.15 27.38 14.96 14 1 
796 GLY CYS 0.00384 18.99 19.28 27.38 21.85 14 1 
796 GLY SER 0.00643 18.99 19.23 27.38 24.76 14 1 
718 LEU HID 0.00042 19.05 18.9 27.51 -37.61 9 2 
718 LEU ARG 0.00238 19.05 19.41 27.51 20.16 9 2 
723 PHE ILE 0.00209 19.06 19.5 27.45 25.68 1 2 
792 LEU HIP 0.00486 19.03 18.88 27.47 24.98 3 2 
792 LEU HIE 0.00486 19.03 18.93 27.47 25.07 3 2 
792 LEU HID 0.00486 19.03 18.98 27.47 25.15 3 2 
796 GLY GLU 0.000154 18.99 18.88 27.38 2.49 14 2 
796 GLY HIE 1.88E-05 18.99 19.55 27.38 11.32 14 2 
796 GLY ASN 5.25E-05 18.99 19.36 27.38 18.38 14 2 
718 LEU LYS 0.00027 19.05 19.22 27.51 24.7 9 3 
719 GLY THR 4.02E-05 19.05 17.76 27.5 20.4 2 3 
726 VAL ARG 2.32E-05 19.04 17.68 27.48 21.62 3 3 
726 VAL LYS 5.39E-05 19.04 17.07 27.48 21.87 3 3 
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743 ALA GLU 7.74E-05 19.14 4.17 27.43 0.47 3 3 
796 GLY HID 1.88E-05 18.99 19.49 27.38 11.69 14 3 
796 GLY THR 3.45E-05 18.99 19.28 27.38 22.43 14 3 
844 LEU TRP 1.90E-05 18.99 19.02 27.56 22.12 1 3 
796 GLY HIP 1.88E-05 18.99 19.46 27.38 12.09 14 4 
718 LEU GLY 8.49E-06 19.05 18.15 27.51 24.02 9 5 
743 ALA ARG 1.73E-05 19.14 6.55 27.43 12.58 3 5 
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Table 7: All Resistor resistance mutation predictions for BRAF with dabrafenib. “Pos” is the position of the residue. “WT AA” is the wildtype identity 

of the amino acid. “Mut AA” is the resistance mutation. “Sig Prob” is the mutational signature probability for the mutation from “WT AA” to ”Mut AA” in 

lung adenocarcinoma. “ATP WT'” and “ATP Mut” are the K* scores of the endogenous ligand with the wildtype and mutant residues, respectively. “Drug 

WT” and “Drug Mut” are the K* scores of dabrafenib with the wildtype and mutant residues, respectively. “Count” is the number of resistance mutations at 

the position. “Rank” is the Pareto rank of the mutation. Note: K* scores are in log10 units where possible and 0 where there is predicted to be no binding.

 Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank 

466 GLY ARG 5.84E-02 18.8 10.53 37.16 -167.92 11 1 
466 GLY LYS 2.38E-02 18.8 11.79 37.16 -52.4 11 1 
466 GLY GLU 2.19E-01 18.8 12.89 37.16 21.32 11 1 
471 VAL LEU 4.43E-04 18.65 19.67 37.26 25.1 6 1 
508 THR ARG 2.95E-04 18.59 18.59 37.23 -118.81 4 1 
535 SER PRO 1.30E-03 18.72 18.65 37.26 0 1 1 
593 GLY PHE 1.99E-06 18.66 20.07 37.17 0 16 1 
593 GLY TYR 3.58E-05 18.66 19.86 37.17 0 16 1 
593 GLY ARG 7.80E-04 18.66 16.17 37.17 0 16 1 
593 GLY GLU 2.76E-04 18.66 18.73 37.17 -60.32 16 1 
593 GLY ASN 1.34E-03 18.66 19.16 37.17 -39.82 16 1 
593 GLY ASP 1.63E-02 18.66 18.89 37.17 -29.79 16 1 
593 GLY CYS 1.66E-03 18.66 19.06 37.17 17.46 16 1 
593 GLY VAL 9.35E-04 18.66 19.18 37.17 28.45 16 1 
593 GLY ILE 4.55E-05 18.66 19.8 37.17 30.24 16 1 
593 GLY SER 6.09E-02 18.66 18.83 37.17 34.27 16 1 
466 GLY GLN 7.24E-05 18.8 12.55 37.16 11.37 11 2 
466 GLY ASP 7.51E-04 18.8 17.06 37.16 18.64 11 2 
466 GLY VAL 2.51E-03 18.8 13.44 37.16 29.23 11 2 
467 SER PRO 7.37E-04 18.62 18.85 37.15 30.42 1 2 
481 ALA LYS 2.74E-04 18.58 17.32 36.98 -4.22 8 2 
481 ALA LEU 7.06E-05 18.58 18.68 36.98 9.97 8 2 
481 ALA GLU 1.21E-03 18.58 17.92 36.98 22.11 8 2 
505 LEU ARG 8.61E-04 18.59 18.58 36.85 16.53 5 2 
508 THR LYS 9.16E-04 18.59 18.59 37.23 27.22 4 2 
514 LEU ARG 5.22E-05 18.57 17.18 37.1 21.32 12 2 
514 LEU ILE 1.65E-03 18.57 18.4 37.1 32.55 12 2 
529 THR PHE 3.77E-05 18.58 15.91 36.99 -125.31 11 2 
529 THR MET 1.74E-05 18.58 18.65 36.99 -8.16 11 2 
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529 THR ASN 9.96E-04 18.58 18.55 36.99 34.54 11 2 
593 GLY HIE 1.66E-05 18.66 19.58 37.17 0 16 2 
593 GLY THR 2.67E-05 18.66 19.06 37.17 27.33 16 2 
464 GLY GLN 7.24E-05 18.58 2.95 37.09 11.05 1 3 
466 GLY THR 5.47E-05 18.8 14.85 37.16 29.21 11 3 
481 ALA ILE 5.14E-05 18.58 14.2 36.98 21.38 8 3 
481 ALA VAL 1.46E-03 18.58 17.77 36.98 33.45 8 3 
505 LEU SER 2.78E-05 18.59 18.58 36.85 35.02 5 3 
514 LEU PRO 1.21E-03 18.57 18.12 37.1 33.34 12 3 
527 ILE LEU 6.37E-05 18.6 18.61 37.3 33.5 1 3 
593 GLY HIP 1.66E-05 18.66 19.56 37.17 0 16 3 
514 LEU SER 2.27E-04 18.57 18.1 37.1 34.19 12 4 
593 GLY HID 1.66E-05 18.66 19.55 37.17 0 16 4 
471 VAL MET 8.44E-06 18.65 18.96 37.26 27.83 6 5 
481 ALA ARG 1.53E-05 18.58 17.02 36.98 -15.13 8 5 
481 ALA ASP 4.39E-06 18.58 19.21 36.98 31.9 8 5 
508 THR GLU 1.05E-05 18.59 18.59 37.23 35 4 5 
514 LEU PHE 1.53E-05 18.57 18.19 37.1 0 12 5 
578 LYS TYR 5.24E-06 18.55 18.39 37.11 -143.76 1 5 
593 GLY TRP 4.78E-06 18.66 18.83 37.17 0 16 5 
593 GLY LEU 3.87E-07 18.66 19.35 37.17 -85.52 16 5 
466 GLY PRO 1.77E-07 18.8 18.27 37.16 0 11 6 
466 GLY TRP 2.10E-06 18.8 13.1 37.16 0 11 6 
466 GLY LEU 4.82E-06 18.8 9.74 37.16 -39.41 11 6 
466 GLY CYS 3.82E-06 18.8 17.62 37.16 27.45 11 6 
469 GLY PRO 1.77E-07 18.6 18.75 37.1 0 1 6 
471 VAL PRO 5.74E-07 18.65 17.88 37.26 0 6 6 
471 VAL ARG 3.03E-07 18.65 18.99 37.26 23.05 6 6 
471 VAL GLU 9.01E-07 18.65 18.82 37.26 31.61 6 6 
481 ALA GLN 1.80E-06 18.58 18.37 36.98 15.47 8 6 
508 THR GLN 2.51E-06 18.59 18.59 37.23 33.59 4 6 
513 ILE ARG 1.06E-06 18.57 18.57 37.09 -30.17 2 6 
513 ILE TYR 2.73E-06 18.57 18.57 37.09 27.86 2 6 
514 LEU HIP 3.37E-07 18.57 17.68 37.1 25.98 12 6 
514 LEU HID 3.37E-07 18.57 17.72 37.1 26.06 12 6 
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514 LEU LYS 1.68E-06 18.57 17.37 37.1 32.25 12 6 
514 LEU MET 2.51E-06 18.57 18.42 37.1 33.68 12 6 
528 VAL ARG 5.57E-07 18.57 18.61 37.01 -72.34 1 6 
529 THR TYR 1.12E-06 18.58 18.58 36.99 -10.9 11 6 
529 THR ARG 4.98E-07 18.58 18.6 36.99 -4.95 11 6 
529 THR LYS 1.74E-06 18.58 18.57 36.99 4.7 11 6 
529 THR LEU 3.10E-06 18.58 18.56 36.99 26.71 11 6 
532 CYS HID 4.44E-06 18.49 14.39 37.09 26.54 7 6 
532 CYS HIP 4.44E-06 18.49 14.51 37.09 26.79 7 6 
532 CYS HIE 4.44E-06 18.49 12.48 37.09 25.2 7 6 
532 CYS ILE 1.16E-06 18.49 18.82 37.09 34.28 7 6 
532 CYS VAL 2.11E-06 18.49 18.7 37.09 34.77 7 6 
471 VAL HID 6.58E-07 18.65 17.61 37.26 33.79 6 7 
505 LEU GLY 6.90E-08 18.59 18.58 36.85 34.62 5 7 
505 LEU GLN 1.84E-06 18.59 18.6 36.85 34.82 5 7 
514 LEU HIE 3.37E-07 18.57 17.72 37.1 27.35 12 7 
514 LEU GLY 3.88E-08 18.57 18.03 37.1 33.68 12 7 
514 LEU ALA 9.24E-07 18.57 18.09 37.1 34.25 12 7 
529 THR HID 6.68E-08 18.58 18.58 36.99 -10.11 11 7 
529 THR HIE 6.68E-08 18.58 18.58 36.99 -4.75 11 7 
529 THR ASP 2.37E-06 18.58 18.51 36.99 34.7 11 7 
531 TRP PRO 5.44E-07 18.51 16.76 37.07 0 1 7 
505 LEU ALA 5.28E-07 18.59 18.58 36.85 35 5 8 
529 THR HIP 6.68E-08 18.58 18.58 36.99 -6.63 11 8 
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Table 8: All Resistor resistance mutation predictions for BRAF with vemurafenib. “Pos” is the position of the residue. “WT AA” is the wildtype identity 

of the amino acid. “Mut AA” is the resistance mutation. “Sig Prob” is the mutational signature probability for the mutation from “WT AA” to ”Mut AA” in 

lung adenocarcinoma. “ATP WT'” and “ATP Mut” are the K* scores of the endogenous ligand with the wildtype and mutant residues, respectively. “Drug 

WT” and “Drug Mut” are the K* scores of vemurafenib with the wildtype and mutant residues, respectively. “Count” is the number of resistance mutations 

at the position. “Rank” is the Pareto rank of the mutation. Note: K* scores are in log10 units where possible and 0 where there is predicted to be no binding.

 Pos WT AA Mut AA Sig Prob  ATP WT ATP Mut  Drug WT Drug Mut Count Rank 

471 VAL LEU 0.000443 18.65 19.67 33.41 29.39 4 1 
481 ALA THR 0.0177 18.58 18.99 33.27 30.69 9 1 
529 THR ILE 0.0202 18.58 18.57 33.45 29.33 10 1 
535 SER PRO 0.0013 18.72 18.65 33.65 0 1 1 
593 GLY PHE 1.99E-06 18.66 20.07 33.47 0 16 1 
593 GLY TYR 3.58E-05 18.66 19.86 33.47 0 16 1 
593 GLY ARG 0.00078 18.66 16.17 33.47 -231.93 16 1 
593 GLY ASN 0.00134 18.66 19.16 33.47 -103.95 16 1 
593 GLY ASP 0.0163 18.66 18.89 33.47 -26.78 16 1 
593 GLY CYS 0.00166 18.66 19.06 33.47 19.89 16 1 
593 GLY VAL 0.000935 18.66 19.18 33.47 21.09 16 1 
593 GLY ILE 4.55E-05 18.66 19.8 33.47 23.08 16 1 
593 GLY SER 0.0609 18.66 18.83 33.47 31.33 16 1 
463 ILE TYR 2.55E-05 18.6 15.94 33.42 -124.43 4 2 
481 ALA GLU 0.00121 18.58 17.92 33.27 11.12 9 2 
481 ALA VAL 0.00146 18.58 17.77 33.27 28.52 9 2 
505 LEU PHE 0.00544 18.59 18.58 33.45 27.01 3 2 
505 LEU ARG 0.000861 18.59 18.58 33.45 27.41 3 2 
508 THR ARG 0.000295 18.59 18.59 33.45 12.91 2 2 
508 THR LYS 0.000916 18.59 18.59 33.45 21.18 2 2 
514 LEU ILE 0.00165 18.57 18.4 33.43 30.08 11 2 
532 CYS ARG 0.000812 18.49 13.04 33.28 -10.66 9 2 
593 GLY HIE 1.66E-05 18.66 19.58 33.47 0 16 2 
593 GLY GLU 0.000276 18.66 18.73 33.47 -12.82 16 2 
593 GLY THR 2.67E-05 18.66 19.06 33.47 20.72 16 2 
481 ALA LEU 7.06E-05 18.58 18.68 33.27 18.19 9 3 
481 ALA LYS 0.000274 18.58 17.32 33.27 18.46 9 3 
514 LEU ARG 5.22E-05 18.57 17.18 33.43 22.28 11 3 
514 LEU GLN 8.77E-05 18.57 17.02 33.43 27.9 11 3 
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514 LEU SER 0.000227 18.57 18.1 33.43 30.81 11 3 
529 THR MET 1.74E-05 18.58 18.65 33.45 -8.52 10 3 
529 THR PHE 3.77E-05 18.58 15.91 33.45 5.09 10 3 
593 GLY HIP 1.66E-05 18.66 19.56 33.47 0 16 3 
481 ALA ILE 5.14E-05 18.58 14.2 33.27 24.57 9 4 
593 GLY HID 1.66E-05 18.66 19.55 33.47 0 16 4 
471 VAL MET 8.44E-06 18.65 18.96 33.41 31.15 4 5 
481 ALA ARG 1.53E-05 18.58 17.02 33.27 19.55 9 5 
481 ALA ASP 4.39E-06 18.58 19.21 33.27 24.15 9 5 
514 LEU PHE 1.53E-05 18.57 18.19 33.43 0 11 5 
593 GLY TRP 4.78E-06 18.66 18.83 33.47 0 16 5 
593 GLY LEU 3.87E-07 18.66 19.35 33.47 -237.44 16 5 
463 ILE HIE 5.14E-06 18.6 18.06 33.42 30.11 4 6 
463 ILE HID 5.14E-06 18.6 18.08 33.42 30.75 4 6 
466 GLY PRO 1.77E-07 18.8 18.27 33.48 0 1 6 
471 VAL PRO 5.74E-07 18.65 17.88 33.41 0 4 6 
471 VAL GLU 9.01E-07 18.65 18.82 33.41 31.34 4 6 
481 ALA GLN 1.80E-06 18.58 18.37 33.27 -15.45 9 6 
514 LEU HIP 3.37E-07 18.57 17.68 33.43 25.66 11 6 
514 LEU HID 3.37E-07 18.57 17.72 33.43 25.78 11 6 
514 LEU GLY 3.88E-08 18.57 18.03 33.43 30.29 11 6 
514 LEU ALA 9.24E-07 18.57 18.09 33.43 30.82 11 6 
516 PHE ARG 4.47E-06 18.59 18.58 33.51 29.7 1 6 
529 THR TYR 1.12E-06 18.58 18.58 33.45 -114.94 10 6 
529 THR ARG 4.98E-07 18.58 18.6 33.45 -34.39 10 6 
529 THR LYS 1.74E-06 18.58 18.57 33.45 -7.92 10 6 
529 THR LEU 3.10E-06 18.58 18.56 33.45 28.04 10 6 
532 CYS HIP 4.44E-06 18.49 14.51 33.28 -0.94 9 6 
532 CYS HIE 4.44E-06 18.49 12.48 33.28 -2.8 9 6 
532 CYS ILE 1.16E-06 18.49 18.82 33.28 27.39 9 6 
532 CYS VAL 2.11E-06 18.49 18.7 33.28 29.58 9 6 
463 ILE HIP 5.14E-06 18.6 17.51 33.42 30.23 4 7 
505 LEU MET 3.58E-07 18.59 18.6 33.45 25.88 3 7 
514 LEU HIE 3.37E-07 18.57 17.72 33.43 25.91 11 7 
529 THR HIE 6.68E-08 18.58 18.58 33.45 10.11 10 7 
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531 TRP PRO 5.44E-07 18.51 16.76 33.25 0 1 7 
532 CYS HID 4.44E-06 18.49 14.39 33.28 -0.66 9 7 
532 CYS THR 2.67E-07 18.49 18.32 33.28 30.91 9 7 
514 LEU GLU 5.81E-08 18.57 17.36 33.43 28 11 8 
529 THR HIP 6.68E-08 18.58 18.58 33.45 10.86 10 8 
529 THR HID 6.68E-08 18.58 18.58 33.45 11.36 10 8 
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Table 9: All Resistor resistance mutation predictions for BRAF with encorafenib. “Pos” is the position of the residue. “WT AA” is the wildtype identity 

of the amino acid. “Mut AA” is the resistance mutation. “Sig Prob” is the mutational signature probability for the mutation from “WT AA” to ”Mut AA” in 

lung adenocarcinoma. “ATP WT'” and “ATP Mut” are the K* scores of the endogenous ligand with the wildtype and mutant residues, respectively. “Drug 

WT” and “Drug Mut” are the K* scores of encorafenib with the wildtype and mutant residues, respectively. “Count” is the number of resistance mutations at 

the position. “Rank” is the Pareto rank of the mutation. Note: K* scores are in log10 units where possible and 0 where there is predicted to be no binding.

 Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank 

471 VAL LEU 0.000443 18.65 19.67 38.16 28.68 10 1 
481 ALA LEU 7.06E-05 18.58 18.68 38.13 -24.05 8 1 
481 ALA GLU 0.00121 18.58 17.92 38.13 10.6 8 1 
529 THR ILE 0.0202 18.58 18.57 38.12 31.23 12 1 
532 CYS ARG 0.000812 18.49 13.04 38.06 -19.78 9 1 
535 SER PRO 0.0013 18.72 18.65 38.18 0 1 1 
593 GLY TYR 3.58E-05 18.66 19.86 38.09 0 17 1 
593 GLY ARG 0.00078 18.66 16.17 38.09 -2.33 17 1 
593 GLY ILE 4.55E-05 18.66 19.8 38.09 2.23 17 1 
593 GLY VAL 0.000935 18.66 19.18 38.09 7.05 17 1 
593 GLY ASN 0.00134 18.66 19.16 38.09 28.19 17 1 
593 GLY ASP 0.0163 18.66 18.89 38.09 28.87 17 1 
593 GLY PHE 1.99E-06 18.66 20.07 38.09 30.05 17 1 
593 GLY CYS 0.00166 18.66 19.06 38.09 34.56 17 1 
593 GLY SER 0.0609 18.66 18.83 38.09 35.04 17 1 
471 VAL PHE 0.000785 18.65 16.37 38.16 26 10 2 
481 ALA LYS 0.000274 18.58 17.32 38.13 7.23 8 2 
514 LEU ARG 5.22E-05 18.57 17.18 38.14 20.73 10 2 
529 THR MET 1.74E-05 18.58 18.65 38.12 -18.87 12 2 
529 THR PHE 3.77E-05 18.58 15.91 38.12 0.72 12 2 
529 THR ASN 0.000996 18.58 18.55 38.12 33.77 12 2 
536 SER ASN 0.0137 18.63 18.53 38.02 34.35 3 2 
583 PHE TYR 0.00408 18.6 18.68 38.1 29.81 9 2 
593 GLY HIE 1.66E-05 18.66 19.58 38.09 0 17 2 
593 GLY GLU 0.000276 18.66 18.73 38.09 22.97 17 2 
593 GLY THR 2.67E-05 18.66 19.06 38.09 24.19 17 2 
593 GLY ALA 0.000254 18.66 18.8 38.09 35.61 17 2 
463 ILE TYR 2.55E-05 18.6 15.94 38.08 9.07 3 3 
481 ALA ILE 5.14E-05 18.58 14.2 38.13 30.63 8 3 
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481 ALA VAL 0.00146 18.58 17.77 38.13 34.23 8 3 
505 LEU HIP 0.00146 18.59 18.59 38.08 35.98 2 3 
514 LEU GLN 8.77E-05 18.57 17.02 38.14 31.64 10 3 
536 SER ASP 5.03E-05 18.63 18.21 38.02 33.54 3 3 
583 PHE VAL 0.000214 18.6 17.05 38.1 33.2 9 3 
583 PHE ILE 0.00316 18.6 17.45 38.1 34.49 9 3 
583 PHE SER 0.00262 18.6 16.86 38.1 34.31 9 3 
593 GLY HIP 1.66E-05 18.66 19.56 38.09 0 17 3 
505 LEU HID 0.00146 18.59 18.59 38.08 36.08 2 4 
593 GLY HID 1.66E-05 18.66 19.55 38.09 0 17 4 
471 VAL PRO 5.74E-07 18.65 17.88 38.16 0 10 5 
471 VAL ARG 3.03E-07 18.65 18.99 38.16 18.89 10 5 
471 VAL MET 8.44E-06 18.65 18.96 38.16 21.35 10 5 
481 ALA GLN 1.80E-06 18.58 18.37 38.13 -7.07 8 5 
481 ALA ARG 1.53E-05 18.58 17.02 38.13 1.87 8 5 
481 ALA ASP 4.39E-06 18.58 19.21 38.13 30.87 8 5 
514 LEU PHE 1.53E-05 18.57 18.19 38.14 -25.54 10 5 
529 THR ARG 4.98E-07 18.58 18.6 38.12 -6.65 12 5 
532 CYS HIP 4.44E-06 18.49 14.51 38.06 -40.5 9 5 
532 CYS HIE 4.44E-06 18.49 12.48 38.06 -40.74 9 5 
533 GLU PRO 3.22E-07 18.58 18.63 38.12 0 1 5 
593 GLY LEU 3.87E-07 18.66 19.35 38.09 19.61 17 5 
593 GLY TRP 4.78E-06 18.66 18.83 38.09 19.1 17 5 
463 ILE HIE 5.14E-06 18.6 18.06 38.08 35.28 3 6 
471 VAL GLU 9.01E-07 18.65 18.82 38.16 35.77 10 6 
529 THR TYR 1.12E-06 18.58 18.58 38.12 19.14 12 6 
529 THR LYS 1.74E-06 18.58 18.57 38.12 20.27 12 6 
529 THR HIE 6.68E-08 18.58 18.58 38.12 21.51 12 6 
529 THR LEU 3.10E-06 18.58 18.56 38.12 22.42 12 6 
531 TRP PRO 5.44E-07 18.51 16.76 38.04 0 1 6 
532 CYS HID 4.44E-06 18.49 14.39 38.06 -40.35 9 6 
532 CYS ILE 1.16E-06 18.49 18.82 38.06 30.25 9 6 
532 CYS VAL 2.11E-06 18.49 18.7 38.06 30.4 9 6 
583 PHE ARG 5.91E-06 18.6 17.17 38.1 32.32 9 6 
583 PHE THR 1.13E-05 18.6 16.91 38.1 32.78 9 6 
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583 PHE MET 5.94E-06 18.6 18.39 38.1 35.48 9 6 
463 ILE HID 5.14E-06 18.6 18.08 38.08 35.51 3 7 
471 VAL HIP 6.58E-07 18.65 17.42 38.16 30.52 10 7 
471 VAL HID 6.58E-07 18.65 17.61 38.16 31.08 10 7 
471 VAL TYR 1.33E-06 18.65 16.37 38.16 31.46 10 7 
514 LEU HIP 3.37E-07 18.57 17.68 38.14 31.73 10 7 
514 LEU HID 3.37E-07 18.57 17.72 38.14 31.87 10 7 
514 LEU LYS 1.68E-06 18.57 17.37 38.14 33.97 10 7 
514 LEU MET 2.51E-06 18.57 18.42 38.14 35.5 10 7 
529 THR HID 6.68E-08 18.58 18.58 38.12 20.75 12 7 
529 THR ASP 2.37E-06 18.58 18.51 38.12 34.9 12 7 
536 SER LEU 5.47E-07 18.63 17.44 38.02 30.59 3 7 
583 PHE TRP 9.45E-07 18.6 13.08 38.1 24.17 9 7 
583 PHE GLY 1.52E-06 18.6 16.63 38.1 33.81 9 7 
471 VAL HIE 6.58E-07 18.65 17.28 38.16 30.93 10 8 
514 LEU HIE 3.37E-07 18.57 17.72 38.14 32.04 10 8 
529 THR HIP 6.68E-08 18.58 18.58 38.12 20.97 12 8 
532 CYS THR 2.67E-07 18.49 18.32 38.06 35.12 9 8 
514 LEU GLU 5.81E-08 18.57 17.36 38.14 32.45 10 9 
514 LEU GLY 3.88E-08 18.57 18.03 38.14 35.47 10 9 
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Table 10: All Resistor resistance mutation predictions for BRAF with PLX8394. “Pos” is the position of the residue. “WT AA” is the wildtype identity 

of the amino acid. “Mut AA” is the resistance mutation. “Sig Prob” is the mutational signature probability for the mutation from “WT AA” to ”Mut AA” in 

lung adenocarcinoma. “ATP WT'” and “ATP Mut” are the K* scores of the endogenous ligand with the wildtype and mutant residues, respectively. “Drug 

WT” and “Drug Mut” are the K* scores of PLX8394 with the wildtype and mutant residues, respectively. “Count” is the number of resistance mutations at 

the position. “Rank” is the Pareto rank of the mutation. Note: K* scores are in log10 units where possible and 0 where there is predicted to be no binding.

 Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank 

471 VAL LEU 0.000443 18.645 19.67 31.624 29.38 3 1 
513 ILE PHE 0.00146 18.569 18.57 31.663 0 1 1 
529 THR ILE 0.0202 18.583 18.57 32.196 12.61 14 1 
535 SER PRO 0.0013 18.717 18.65 31.813 0 5 1 
535 SER LEU 0.00156 18.717 19.09 31.813 24.04 5 1 
593 GLY PHE 1.99E-06 18.659 20.07 31.991 0 16 1 
593 GLY TYR 3.58E-05 18.659 19.86 31.991 0 16 1 
593 GLY ARG 0.00078 18.659 16.17 31.991 -248.98 16 1 
593 GLY GLU 0.000276 18.659 18.73 31.991 -61.35 16 1 
593 GLY ASN 0.00134 18.659 19.16 31.991 -56.56 16 1 
593 GLY ASP 0.0163 18.659 18.89 31.991 -29.16 16 1 
593 GLY VAL 0.000935 18.659 19.18 31.991 6.66 16 1 
593 GLY CYS 0.00166 18.659 19.06 31.991 12.77 16 1 
593 GLY ILE 4.55E-05 18.659 19.8 31.991 22.76 16 1 
593 GLY SER 0.0609 18.659 18.83 31.991 28.13 16 1 
463 ILE TYR 2.55E-05 18.596 15.94 31.621 -260.1 5 2 
481 ALA LEU 7.06E-05 18.575 18.68 32.195 2.47 8 2 
481 ALA LYS 0.000274 18.575 17.32 32.195 3.05 8 2 
481 ALA GLU 0.00121 18.575 17.92 32.195 12.04 8 2 
505 LEU ARG 0.000861 18.589 18.58 31.429 24.96 4 2 
508 THR ARG 0.000295 18.594 18.59 31.461 -115.96 2 2 
508 THR LYS 0.000916 18.594 18.59 31.461 12.12 2 2 
514 LEU ILE 0.00165 18.57 18.4 31.667 21.52 10 2 
514 LEU ARG 5.22E-05 18.57 17.18 31.667 21.09 10 2 
529 THR PHE 3.77E-05 18.583 15.91 32.196 -106.19 14 2 
529 THR MET 1.74E-05 18.583 18.65 32.196 -28.68 14 2 
529 THR VAL 4.99E-05 18.583 18.72 32.196 28.05 14 2 
529 THR ASN 0.000996 18.583 18.55 32.196 27.98 14 2 
532 CYS ARG 0.000812 18.49 13.04 31.578 -0.71 9 2 
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535 SER ILE 0.000391 18.717 19.02 31.813 28.17 5 2 
535 SER TYR 0.00262 18.717 18.68 31.813 29.19 5 2 
593 GLY HIE 1.66E-05 18.659 19.58 31.991 0 16 2 
593 GLY THR 2.67E-05 18.659 19.06 31.991 6.63 16 2 
471 VAL PHE 0.000785 18.645 16.37 31.624 27.32 3 3 
481 ALA ILE 5.14E-05 18.575 14.2 32.195 16.28 8 3 
481 ALA VAL 0.00146 18.575 17.77 32.195 27.92 8 3 
514 LEU VAL 0.000522 18.57 18.3 31.667 27.8 10 3 
514 LEU PRO 0.00121 18.57 18.12 31.667 29.31 10 3 
593 GLY HIP 1.66E-05 18.659 19.56 31.991 0 16 3 
593 GLY HID 1.66E-05 18.659 19.55 31.991 0 16 4 
471 VAL MET 8.44E-06 18.645 18.96 31.624 30.12 3 5 
481 ALA ARG 1.53E-05 18.575 17.02 32.195 -7 8 5 
481 ALA ASP 4.39E-06 18.575 19.21 32.195 26.65 8 5 
505 LEU TYR 8.68E-06 18.589 18.59 31.429 13.95 4 5 
514 LEU PHE 1.53E-05 18.57 18.19 31.667 0 10 5 
535 SER ARG 1.91E-06 18.717 18.84 31.813 26.28 5 5 
593 GLY TRP 4.78E-06 18.659 18.83 31.991 0 16 5 
593 GLY LEU 3.87E-07 18.659 19.35 31.991 -172.14 16 5 
463 ILE HIE 5.14E-06 18.596 18.06 31.621 14.78 5 6 
463 ILE HIP 5.14E-06 18.596 17.51 31.621 14.5 5 6 
463 ILE HID 5.14E-06 18.596 18.08 31.621 23.91 5 6 
481 ALA GLN 1.80E-06 18.575 18.37 32.195 -57.06 8 6 
516 PHE THR 3.77E-06 18.593 18.56 32.276 29.08 1 6 
528 VAL ARG 5.57E-07 18.569 18.61 32.223 21.75 1 6 
529 THR TYR 1.12E-06 18.583 18.58 32.196 0 14 6 
529 THR ARG 4.98E-07 18.583 18.6 32.196 -73.94 14 6 
529 THR LEU 3.10E-06 18.583 18.56 32.196 -40.25 14 6 
529 THR LYS 1.74E-06 18.583 18.57 32.196 -16.49 14 6 
532 CYS HIP 4.44E-06 18.49 14.51 31.578 10.43 9 6 
532 CYS HIE 4.44E-06 18.49 12.48 31.578 8.45 9 6 
532 CYS ILE 1.16E-06 18.49 18.82 31.578 28.7 9 6 
532 CYS VAL 2.11E-06 18.49 18.7 31.578 29 9 6 
505 LEU MET 3.58E-07 18.589 18.6 31.429 28.4 4 7 
505 LEU GLN 1.84E-06 18.589 18.6 31.429 29.15 4 7 
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514 LEU HIP 3.37E-07 18.57 17.68 31.667 24.27 10 7 
514 LEU HIE 3.37E-07 18.57 17.72 31.667 24.93 10 7 
514 LEU HID 3.37E-07 18.57 17.72 31.667 25.66 10 7 
529 THR HIP 6.68E-08 18.583 18.58 32.196 -75.31 14 7 
529 THR HID 6.68E-08 18.583 18.58 32.196 -74.57 14 7 
529 THR HIE 6.68E-08 18.583 18.58 32.196 -73.8 14 7 
529 THR ASP 2.37E-06 18.583 18.51 32.196 27.31 14 7 
529 THR CYS 1.13E-07 18.583 18.53 32.196 29.46 14 7 
531 TRP PRO 5.44E-07 18.512 16.76 31.57 0 1 7 
532 CYS HID 4.44E-06 18.49 14.39 31.578 10.57 9 7 
514 LEU GLU 5.81E-08 18.57 17.36 31.667 26.07 10 8 
514 LEU LYS 1.68E-06 18.57 17.37 31.667 28.06 10 8 
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Appendix B: More Details on Applying DexDesign to 
Predict de novo D-peptide Inhibitors to CALP and 
MAST2 

In this appendix, we provide further information pertinent to the DexDesigned de 

novo D-peptide inhibitors targeting CALP and MAST2 presented in Chapter 3. 

B.1 K* Score Normalization 

The K* algorithm21,47 and the K* scores it predicts have been validated 

experimentally in many previous works20,22–24,28–30,47,72. While sometimes we have 

observed the K* scores to correlate quantitively (Pearson) with Ka
29,72,214, we have greater 

evidence that K* scores better correlate with Ka using a ranking (Spearman) 

paradigm24,35. For example, we recently analyzed the accuracy of EWAK* (an 

accelerated K*-derivative algorithm) predictions on 41 c-Raf-RBD variants binding to 

KRas and found that the K* score and experimental ranks correlated with a Spearman ρ 

of 0.8124. Therefore, when we convert K* scores to physical quantities, such as ΔG, we 

normalize the K* scores based on available empirical evidence (when available). For 

example, for the CALP-PEPs, we scale our ΔG values based on existing binding affinity 

data for CFTR (Ki = 420 ± 80 μM)183 and kCAL01 (Ki = 2.3 ± 0.2 μM)23, for which we 

have also predicted K* scores (see Table 12). 

The necessity to normalize K* scores when converted to physical quantities is due 

to simplifications necessary for modeling the systems computationally. We have 

previously described normalization in Wang (2022)26, and review the reasons here for the 

reader. First, since it is computationally intractable to model large continuous movements 

of each atom in a molecule while simultaneously searching over protein sequences and 
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conformations, our K* computations focus on modeling continuous movements for 

residues within the PDZ binding site. Second, the OSPREY energy function models 

solvent using a residue-pairwise approximation to the energy field, namely the Effective 

Energy Function (EEF1) for proteins in solution230. Analysis of previous K* designs has 

shown that the EEF1 contribution to the OSPREY energy function can overestimate van 

der Waals terms. Lastly, limitations in the input model, as well as the user-specified 

conformation space (Section 2.3.1.1 in the main text defines conformation space), can 

cause an over- or underestimation in the K*-predicted enthalpy or entropy of the bound 

protein:peptide complex. 
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B.2 The DPR scaffolds, CALP-PEPs, and MAST2-PEPs 

Table 11: The DPR scaffolds for each of the D-peptide redesigns. Each of the DPR scaffolds was extracted 

from an extant empirical protein structure from the Protein Databank175,231. Name: the name of the DPR 

scaffold. Source PDB ID: the PDB ID that can be used to retrieve the empirical structure from the Protein 

Databank. Source Residues: The chain and amino acid range in the empirical structure uniquely identifying 

the source of the DPR. Template Peptide: The PDZ-binding peptide used as a search query to MASTER57, 

which returned a result set containing the DPR scaffold. Backbone RMSD (Å): the full backbone RMSD 

between the template peptide and the DPR scaffold. Sequence: The DPR scaffold's peptide sequence. 

Name Source 
PDB ID 

Source 
Residues 

Template  
Peptide 

Backbone 
RMSD (Å) 

Sequence 

CALP-DPR1 1g1k A117-122 kCAL0122 0.91779 DGGAFG 

CALP-DPR2 3u0o A137-142 kCAL01 0.88123 AGGHSI 

CALP-DPR3 4m6r A45-51 kCAL01 0.88412 GGGISL 

CALP-DPR4 7bjt B403-409 kCAL01 0.89913 QGGVAI 

CALP-DPR5 1c8n C61-66 kCAL01 0.98744 AGGFVT 

MAST2-DPR1 3s4k A76-81 PTEN174 0.91439 EGGSVV 

MAST2-DPR2 6zec H5-10 PTEN 0.9417 QQWGAG 

MAST2-DPR3 6tc2 L22-27 PTEN 0.95832 RGFFYT 
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Table 12: K* scores and structural features validation of the CALP-PEPs, kCAL01, and the CFTR C-terminal SLiM. ID: the ID of the DexDesign-

generated D-peptide inhibitor, or the endogenous ligands. DPR ID: The scaffold from which the CALP-PEP was generated (see Table 11 for the structural 

source of the DPR) or, in the case of kCAL01 and the CFTR C-term SLiM, the PDB ID of the structure. Sequence: the amino acid sequence of the peptide. 

K* score [bounds]: The OSPREY-computed log10 K* score (see Section 1.2.2 for a description of the K* algorithm17,21) and the computed lower- and upper-

bounds. The K* scores were computed to an ε of 0.9. ΔK* score: The increase in the CALP-PEP's log10 K* score over its source DPR scaffold, indicating 

the predicted improvement in binding K* and DexDesign were able to achieve through sequence optimization. CBL H-bonds: The number of H-bonds 

formed between CALP's carboxylate binding loop (CBL) and the peptide's C-terminal carboxylate. β-strand H-bonds: the number of H-bonds formed 

between CALP's β2 strand and the peptide mainchain. P-1 AA: The type of amino acid filling CALP's hydrophobic pocket at the peptide's position P-1 

(† indicates position P0 in L-peptides). 

ID DPR ID Sequence K* score [bounds] ΔK* score CBL H-bonds β-strand H-bonds  P-1 AA 

KCAL01 6ov722 WQVTRV 30.4 [30.4 - 31.1] N/A 3 3 Ile† 

CFTR C-TERM 2lob182 VQDTRL 16.2 [15.7 - 16.6] N/A 3 3 Leu† 

CALP-PEP1 CALP-DPR1 RMGRFK 23.2 [22.4 - 24.2] 11.1 0 3 Phe 

CALP-PEP2 CALP-DPR1 DMGRFK 21.8 [21.6 - 22.8] 9.7 1 2 Phe 

CALP-PEP3 CALP-DPR1 RGGRFK 22.3 [22.0 - 23.3] 10.2 0 2 Phe 

CALP-PEP4 CALP-DPR2 RQGRHI 26.0 [25.1 - 27.0] 13.0 2 2 His 

CALP-PEP5 CALP-DPR2 AQGRHM 25.4 [24.6 - 26.4] 12.4 2 2 His 

CALP-PEP6 CALP-DPR2 AQGRHI 25.2 [24.8 - 26.2] 12.2 2 2 His 

CALP-PEP7 CALP-DPR3 RGGIHK 24.0 [23.9 - 25.0] 11.2 3 3 His 

CALP-PEP8 CALP-DPR3 RGGRHL 25.3 [25.0 - 26.2] 12.5 3 3 His 

CALP-PEP9 CALP-DPR3 RGGRHK 26.1 [25.4 - 27.1] 13.3 3 3 His 

CALP-PEP10 CALP-DPR4 RQGRHM 23.6 [22.6 - 24.6] 10.1 4 2 His 

CALP-PEP11 CALP-DPR4 QQGRHM 23.4 [22.5 - 24.4] 9.9 4 3 His 

CALP-PEP12 CALP-DPR4 RQGVHM 22.6 [21.8 - 23.6] 9.1 4 3 His 

CALP-PEP13 CALP-DPR5 AGGRHR 18.9 [17.9 - 19.9] 7.6 1 3 His 

CALP-PEP14 CALP-DPR5 AGGRHM 18.8 [17.8 - 19.8] 7.5 1 2 His 

CALP-PEP15 CALP-DPR5 AGGRMK 18.7 [17.8 - 19.7] 7.4 1 2 Met 



 

 

1
4
9
 

Table 13: K* scores and structural features validation of the MAST2-PEPs and PTEN6. ID: the ID of the DexDesign-generated D-peptide inhibitor, or 

endogenous ligands. DPR ID: The scaffold from which the MAST-PEP was generated (see Table 11 for the structural source of the DPR) or, in the case of 

PTEN6, the PDB ID of the structure. Sequence: the amino acid sequence of the peptide. K* score [bounds]: The OSPREY-computed log10 K* score (see 

Section 1.2.2 for a description of the K* algorithm17,21) and the computed lower- and upper-bounds. The K* scores were computed to an ε of 0.9. ΔK* score: 

The increase in the MAST2-PEP's log10 K* score over its source DPR scaffold, indicating the predicted improvement in binding K* and DexDesign were 

able to achieve through sequence optimization. Hydrophobic Pocket (location): The type and location of the amino acid filling MAST2's hydrophobic 

pocket. - indicates this residue is absent. 

ID DPR ID Sequence K* score [bounds] ΔK* score Hydrophobic Pocket (location) 

PTEN6 2kyl174 TQITKV 28.8 [28.4 - 29.8] N/A Val (P0) 

MAST2-PEP1 MAST2-DPR1 EMGDMD 30.9 [30.8 - 31.8] 20.2 Met (P-1) 
MAST2-PEP2 MAST2-DPR1 EEGDMD 30.5 [30.4 - 31.1] 19.9 Met (P-1) 
MAST2-PEP3 MAST2-DPR1 EQGDMD 30.3 [30.2 - 31.0] 19.7 Met (P-1) 
MAST2-PEP4 MAST2-DPR2 EGEEDL 32.7 [32.7 - 33.0] 22.0 Leu (P0) 
MAST2-PEP5 MAST2-DPR2 YGEEDL 32.6 [32.6 - 32.9] 21.9 Leu (P0) 
MAST2-PEP6 MAST2-DPR2 FGEEDL 32.2 [32.2 - 32.3] 21.5 Leu (P0) 
MAST2-PEP7 MAST2-DPR3 EDDEYE 30.7 [30.7 - 30.7] 21.9 - 
MAST2-PEP8 MAST2-DPR3 EEDEYE 30.7 [30.7 - 30.7] 21.8 - 
MAST2-PEP9 MAST2-DPR3 DDDEYE 29.4 [29.4 - 29.4] 20.5 - 
MAST2-PEP10 MAST2-DPR2 IGEEDL 32.2 [32.2 - 32.3] 21.5 Leu (P0) 
MAST2-PEP11 MAST2-DPR2 HGEEDL 31.6 [31.6 - 32.4] 20.8 Leu (P0) 
MAST2-PEP12 MAST2-DPR2 QGEEDL 31.4 [31.4 - 31.9] 20.7 Leu (P0) 
MAST2-PEP13 MAST2-DPR2 VGEEDL 31.2 [31.2 - 31.2] 20.5 Leu (P0) 
MAST2-PEP14 MAST2-DPR2 MGEEDL 31.0 [31.0 - 31.7] 20.3 Leu (P0) 
MAST2-PEP15 MAST2-DPR1 EYGDMD 30.3 [30.2 - 31.0] 19.7 Met (P-1) 
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Table 14: Results of validation and control experiments with D-amino acid GyGlanvdessG, DPRV, 

and ST0929 control experiment scaffold bound to streptavidin. Peptide: the name of the D-peptide. 

Sequence: the sequence of the D-peptide. K* score: the log10 K* score indicating the predicted binding 

affinity using the K* algorithm (see Section 1.2.2). Trp79 contacts in β barrel: boolean value stating if the 

D-peptide establishes hydrophobic interactions with streptavidin Trp79. # H-bonds in flexible loop: the 

number of hydrogen bonds established between the D-peptide and the flexible loop, comprised of streptavidin 

Ser45-Ser52. 

Peptide Sequence K* score Trp79 contacts 
in β barrel 

# H-bonds in 
flexible loop 

GYGLANVDESSG GLANVDESS 32.2 Yes 1 
ST0929 
(CONTROL) 

GLANVDESS 26.6 Yes 1 

DPRV WWMIGDWND 32.8 Yes 2 
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B.3 The MASTER database, D- vs. L-sidechain comparison, and 
DexDesign validation  

 

Figure 16: Composition of DexDesign's MASTER search database by resolution. Step 3 of the 

DexDesign search algorithm executes a search over a protein structure database to identify L-protein 

segments with backbones similar (by RMSD) to the D-peptide query. For this, DexDesign uses MASTER57 

to search over a protein structure database. We created a database of high-resolution L-protein structures by 

mining the RCSB PDB175 for crystallographically determined structures omitting DNA, RNA, and small 

molecules with a resolution of at most 2.5 Å. This resulted in a database containing 119,160 structures of 

varying resolutions. The histogram above shows the distribution of the resolution of the structures in the 

database we created. The mean, median, and model resolutions are 1.88 Å, 1.9 Å, 2.0 Å, respectively. The 

database was generated on 01/24/2023. 
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Figure 17: The sidechains of backbone-aligned L and D peptides point in opposite directions. (A) P0 

and P-1 orientation for kCAL01 bound to CALP (PDB ID 6ov7)22. The nonpolar P0 residue (Val) points 

towards CALP, filling the hydrophobic pocket. The charged P-1 residue (Arg) is oriented towards the CBL, 

where it forms three hydrogen bonds (not shown). (B) P0 and P-1 orientation for CALP-DPR3 (D-form, PDB 

ID 4m6r, residues A45-51, GGGISL) with CALP (L-form). In contrast to (A), the P0 residue (Leu) points 

toward the CBL. Furthermore, the P-1 residue (Ser) points toward the hydrophobic pocket. As expected, the 

residue positions are oriented in opposite directions between the L and D peptide, with an angle of 151° 

between kCAL01 and CALP-DPR3’s P0 residue and 155° between kCAL01 and CALP-DPR3’s P-1 residue. 

Therefore, redesign methods for CALP-DPR3 focus on filling the hydrophobic pocket with mutations and 

continuous flexibility at P-1 and establishing adequate hydrogen bonds between P0 and the CBL. 
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Figure 18: Backbone and hydrogen bonds at ligand residue positions 7 and 9 result in unique binding 

geometry and chemistry among D-amino acid GyGlanvdessG, DPRV, and ST0929 control experiment 

scaffold bound to streptavidin. (A) Comparison of backbone orientation and hydrogen bonds between 

D-peptide GyGlanvdessG:streptavidin Glu7 and DPRV:streptavidin Trp614, which are both the 7th residue 

from the N-terminus. The ST0929 control ligand is omitted for clarity. While GyGlanvdessG (grey) orients 

its Glu7 towards residues Asn23 and Ser27 in streptavidin (green cartoon and lines) to make two hydrogen 

bonds (yellow dashes), DPRV’s (cyan) Trp7 is unable to make contact with these residues. Were DPRV 

Trp614 to rotate towards these residues, it would encounter steric clashes with streptavidin residue Leu25. 

This is an example of irrecoverable ligand interactions due to different backbone geometries. (B) Backbone 

geometry differences at residue positions 7 and 9 between GyGlanvdessG:streptavidin and the ST0929 

control experiment scaffold bound to streptavidin. DPRV is omitted for clarity. The full backbone RMSD of 

the ST0929 control scaffold (magenta) to GyGlanvdessG (grey) is 0.48 Å. This seemingly small alignment 

difference yields a starting scaffold where 100% native sequence recovery results in a suboptimal binder, 

with the most notable backbone positions differences occurring at the C-terminus and 7th residue from the 

N-terminus. The C-terminal oxygens point in different directions, with a distance of 1.8 Å between them. 

Further, the Cα carbons at the 7th residue from the N-terminus are 1.2 Å apart. As described for DPRV in (A), 

residues at the C-terminus and 7th residue position from the N-terminus exhibit either loss or generation of 

hydrogen bonds after application of the DexDesign protocol. Unlike GyGlanvdessG and similar to DPRV, 

the ST0929 control experiment scaffold is unable to make hydrogen bonds with streptavidin Ser27 (not 

shown). However, similar to GyGlanvdessG, it lacks a hydrogen bond in the flexible binding loop. Overall, 

this illustrates how differences in two key backbone positions can influence designability and predicted 

binding affinity. 
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Appendix C: Protocol for Predicting Drug Resistant 
Protein Mutations to an ERK2 Inhibitor using Resistor 

Shortly after our primary article on Resistor was published in Cell Systems30, 

STAR Protocols (another Cell Press journal) invited us to submit a step-by-step protocol 

for using Resistor to predict resistance mutations. As I had already received several 

queries from colleagues asking for guidance on using Resistor, STAR Protocol's 

invitation to systematize and document its usage seemed like a sensible thing to do. And 

in retrospect I am glad that we did. The contents of this appendix are now often one of 

the first things we share with new protein designers using OSPREY, including those not 

particularly interested in predicting resistance. The reason for this is that not only is this 

protocol a step-by-step instruction manual for using Resistor, but since Resistor calls K* 

as a subroutine, it is also a step-by-step instruction manual for running what is OSPREY's 

most popular design algorithm: K*. 

For this protocol, I decided not to merely rehash the Resistor predictions we made 

and validated for the Cell System's publication, but rather thought it would be more 

interesting to apply Resistor to predict resistance mutations in a new (to me) kinase and 

inhibitor: ERK2 and the ERK1/2 inhibitor SCH779284 used to treat melanoma. This 

appendix is adapted from the following publication: 

 

Guerin, N., Kaserer, T. & Donald, B. R. Protocol for predicting drug-resistant 

protein mutations to an ERK2 inhibitor using RESISTOR. STAR Protocols 4, 

102170 (2023). 
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C.1 Before you begin 

This section describes the minimal hardware and operating system requirements, 

where to obtain the requisite software and its installation procedure, and the file formats 

of the sequence and structural inputs required to run Resistor.  For the purposes of 

demonstration, we use Resistor to predict resistance mutations on the ERK2 kinase to the 

inhibitor SCH772984 (hereafter referred to as SCH7). Previously, we have used Resistor 

to prospectively predict resistance mutations in EGFR and BRAF, which we then 

validated experimentally30. In addition, we have employed aspects of Resistor, including 

multistate K* design and mutational signature probabilities, in other applications, such as 

our development of algorithms like BBK* (Branch and Bound Over K*)38 and our 

predictions of resistance-conferring mutations to inhibitors of kinases such as KIT, 

EGFR, ABL1, and ALK28.  

Here we offer abbreviated definitions and references for the terminology we use 

throughout this protocol. Positive design is the use of computational protein design 

algorithms to improve an objective, such as ligand binding. Negative design is the 

opposite, i.e., the goal is to make an objective worse, such as to ablate binding. Resistor 

uses multistate design29,36,46,72,73, or both positive and negative design in parallel, to 

mimic how mutations affect the competitive balance between a protein's endogenous 

ligand and a competitive inhibitor. Resistance can occur via a protein's increased activity 

with its endogenous ligand, decreased binding with an inhibitor, or a combination of 

these factors28–30,72. 

Resistor employs Pareto optimization over positive and negative design, 

mutational signature probabilities, and hotspot scores to rank prospective resistance 
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mutants. The positive and negative design portions use the K* algorithm21 implemented 

in OSPREY35, which generates low-energy molecular ensembles to compute the partition 

functions the algorithm uses to provably approximate binding affinity, 𝐾𝑎
21,46. Mutational 

signature probabilities are derived from data provided by Alexandrov et al.81 and denote 

the probability a DNA base will mutate to another base in a given sequence context and 

cancer type. A hotspot score is the number of sequences with a mutation at a particular 

residue location which multistate design criteria predicts as structural resistance 

mutations28,30. 

Figure 19 contains a conceptual overview of the Resistor protocol's main phases. 
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Figure 19: Conceptual overview of the main steps involved in executing the Resistor protocol. The first 

phase, Preparation, involves obtaining the positive and negative design structure files in PDB format, along 

with the corresponding cDNA sequence. The structures need to be prepared for OSPREY K* design. Finally, 

the structures and additional inputs (outlined below) must be collected into a YAML design file. The second 

phase, Execution, involves using the OSPREY K* algorithm to compute provable approximations to the 

binding constant, 𝑲𝒂, and using Resistor to filter the results, assign mutational probabilities, and Pareto 

optimize. The final phase, Analysis, is where the user examines the Resistor-provided output of Pareto ranks 

and low-energy molecular ensembles. The details involved in each of these steps are explained 

comprehensively in this appendix. 

 

C.1.1 Hardware and software 

Resistor requires a minimum of 32 GiB of RAM and 5 GiB of free hard disk 

space. You also will need to have a good text editor on your computer: vim, emacs, or 

any other text editor that can be used for editing ASCII characters will do; programs like 

Microsoft Word or LibreOffice Writer will not. Our demonstration of the protocol is on a 



 

158 

Linux operating system, although with minor adjustments the process below could be 

carried out on Windows and macOS operating systems. 

C.1.2 Installing the software dependencies 

Resistor requires Java 17, Miniconda, AmberTools, Julia, and OSPREY.  

1. Install Java 17. 

a. Download an archive for the latest version of Java 17 for your 

platform from https://jdk.java.net/archive/ 

b. Extract the archive to a location on your computer, e.g., 

$HOME/java/jdk-17.0.2. 

c. In your shell’s profile, set the JAVA_HOME environment variable to 

the location you extracted the archive to, and add the java 

executable to your path, e.g.,  

d. Verify java is available on your shell’s path by opening a new 

terminal window, typing java -version, and hitting enter. You 

should see output like the following:  

Movie S1 in from Guerin et al.31 demonstrates this procedure on 

Fedora Linux. 

2. Install Python using Miniconda 

> java -version 
openjdk version "17.0.2" 2022-01-18 
OpenJDK Runtime Environment (build 17.0.2+8-86) 
OpenJDK 64-Bit Server VM (build 17.0.2+8-86, mixed mode, sharing) 

> export JAVA_HOME=$HOME/java/jdk-17.0.2 
> export PATH=$PATH:$JAVA_HOME/bin 
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a. Download the latest Python 3 version of Miniconda from 

https://docs.conda.io/en/latest/miniconda.html.  

b. Run the interactive installer, e.g.:  

c. When the installer asks you “Do you wish the installer to initialize 

Miniconda3 by running conda init? [yes|no]”, type yes and hit 

enter. 

d. Close and re-open your shell.  

e. Now, when you log into your shell, a Miniconda environment is 

activated. Run the following command so its environment is not 

activated by default. 

Movie S2 from Guerin et al.31 demonstrates these steps on Fedora 

Linux. 

3. Install AmberTools 

a. Install AmberTools22 using the installation instructions for 

“Binary distribution via Conda” on 

https://ambermd.org/GetAmber.php#ambertools. In short: 

b. To verify that AmberTools is correctly installed, type:  

> sh Miniconda3-latest-Linux-x86_64.sh 

> conda config --set auto_activate_base false 

> conda create --name AmberTools22 
> conda activate AmberTools22 
(AmberTools22) > conda install -c conda-forge ambertools=22 compilers 
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A help message for the antechamber program should be displayed. 

Movie S3 from Guerin et al.31 demonstrates these steps on Fedora 

Linux. 

Optional: You can install the conda-packaged yamllint program into this conda 

environment. Yamllint is used to check the syntactic validity of YAML documents:  

If you choose to install yamllint, you should also create a default configuration file that 

disables its line length check. To do so, create the file 

$HOME/.config/yamllint/config (and the intermediary directories as necessary), 

and add the following content: 

4. Install Julia 

a. Download and extract the latest stable release of Julia. Resistor 

was developed using Julia v1.6, but any v1 release of Julia post 

Julia 1.6 should work. 

i. Go to https://julialang.org/downloads/ to get the latest Julia 

package. 

ii. Download the architecture-specific Linux archive to your 

computer. 

iii. Extract the archive to a location on your computer, e.g., 

$HOME/julia/julia1.8 

> antechamber -h 

> conda activate AmberTools22 
(AmberTools22)> conda install -c conda-forge yamllint 

extends: default 
 
rules: 
  line-length: disable 
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b. In your shell’s profile, add the executable to your path, e.g., 

c.  Close and re-open your shell. Then, to verify that Julia is correctly 

installed, type: 

which should print out the version of Julia you downloaded. Movie 

S4 from Guerin et al.31 demonstrates these steps on Fedora Linux.  

5. Install OSPREY with Resistor  

a. Download OSPREY version 3.3 from 

https://github.com/donaldlab/OSPREY3/releases/3.3-resistor 

b. Extract the OSPREY distribution: 

c. Add the OSPREY executable on your PATH for simplified access. 

Assuming you have extracted the archive in the previous step in 

your home directory, add the following line to your shell’s profile 

file: 

d. Verify you have OSPREY on your path by executing the following 

command in the terminal, which should display help text: 

Movie S5 from Guerin et al.31 demonstrates this procedure on 

Fedora Linux. If you do not see the help text, see 

Problem/Potential Solution 1 (C.5.1).  

export JULIA_HOME=$HOME/julia/julia1.8 
export PATH=$PATH:$JULIA_HOME/bin 

> julia --version 

> tar --file osprey-3.3.tar --extract 

export OSPREY_HOME=$HOME/osprey-3.3 
export PATH=$PATH:$OSPREY_HOME/bin 

> osprey affinity --help 
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C.1.3 Obtaining the sequence and structure files 

6. Download your positive and negative design structure files 

a. Navigate to the Protein Data Bank (https://www.rcsb.org/) in your 

browser. 

b. Search for the protein of interest. You will need to download a 

structure of the protein bound to the drug and the protein 

interacting with the endogenous ligand. 

c. For ERK2 bound to SCH7, search the Protein Data Bank for by 

PDB ID 4qta232 and download the file in PDB format.  

d. For ERK2 bound to AMP-PNP (adenylyl-imidodiphosphate, an 

analogue of ATP), search the Protein Data Bank by PDB ID 

2y9q233 and download the file in PDB format. 

7. Download the coding DNA sequence 

Note: There are many places on the internet to download DNA sequences. For sequences 

of proteins implicated in carcinogenesis, such as ERK2, the COSMIC database108 is one 

such good choice. 

a. In a web browser, navigate to https://cancer.sanger.ac.uk/cosmic. 

b. Search for ERK2 and go to the gene view. 

c. Download the cDNA sequence (ENST00000215832.10) in 

FASTA file format. 

8. Choose your cancer-type specific mutational probabilities JSON file 

a. Identify the probabilities file you need. For this protocol, we will 

use the melanoma probabilities file, melanoma.json. 
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b. Mark down the path to this file, which you will use in C.2.3. 

Note: The Resistor directory within the OSPREY distribution 

(osprey-3.3/resistor) contains mutational probability files for melanoma, non-

small cell lung cancer, stomach cancer and pancreatic cancer. It is also possible to create 

your own mutational probabilities file, which is covered in Section 2.2.3. 

 

CRITICAL: Ensuring that the following prerequisites are met helps avoid downstream 

prediction problems: 1. When possible, use high-quality, high-resolution structures. 

While the cut-off for resolution is still a matter of discussion in the scientific community, 

previous successful designs have used X-Ray diffraction resolutions ranging between 1.4 

and 3.15 Å20,24,26,29,72. We have also had success with cryo-EM resolutions between 3.4 

and 11.5 Å. For NMR structures, we recommend that the structure determination use 

RDCs; 2. Check that the residue numbers and amino acid types in the positive and 

negative protein structures are the same, e.g. ALA 10 in the structure for the positive 

design and ALA 10 in the structure for the negative design refer to the same residue; and 

3. that the cDNA sequence translates to the amino sequence in the structure files, i.e., 

they represent the same genetic variant. Furthermore, the FASTA file must begin with the 

codon that translates to residue number 1.  In this example, PDB ID 4qta (ERK2:SCH7) 

has a resolution of 1.45 Å, PDB ID 2y9q (ERK2:AMP-PNP) has a resolution of 1.55 Å, 

and the residue numbering in the two structures are the same and correspond to the 

canonical numbering also used in the FASTA file. See Movie S6 from Guerin et al.31 for 

a demonstration of carrying out these checks. 
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 If your checks indicate discrepancies exist, you will need to manipulate the files 

to resolve them. As the PDB and FASTA file formats are standard in the fields of 

structural biology and bioinformatics there are many tools available for their 

manipulation, including Maestro221 for manipulating structural information. Yet as both 

file formats are defined in human-readable ASCII text, oftentimes the simplest way to 

make any necessary tweaks in the files is with a standard text editor, such as emacs or 

vim. 

 In cases where empirical structures are not available, it is possible to use docking, 

homology modeling, or other computational modeling techniques to generate 

structures23,26,29,30,72. For example, computational tools such as Modeller234 or Alphafold13 

could be used to predict an initial protein structure, and docking tools such as AutoDock 

Vina11 or those included in Maestro221 could be used to dock the positive and negative 

design ligands28,30. With the recent explosion of available structural models, such as the 

Alphafold Protein Structure Database14 it may even be the case that a computationally 

predicted starting structure already exists. When taking such an approach, it is critical to 

have high confidence in the accuracy of any computationally generated structures as 

Resistor is very sensitive to variation in structural input. 

C.1.4 Key Resources Table 

Table 15 shows where you can obtain all the key resources needed to execute this 

demo. 

 



 

 

1
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Table 15: Key Resources for Resistor. 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited Data 

Model of ERK2:AMP-PNP protein 
structure 

Garai et al., 2012 PDB ID 2y9q 

Model of ERK2:SCH7 protein complex 
structure 

Chaikuad et al., 2014 PDB ID 4qta 

cDNA of ERK2 Tate et al., 2019 ENST00000215832.10 

Software and Algorithms  

OSPREY 3.3 Hallen et al., 2018 https://github.com/donaldlab/OSPREY3/releases/3.3-resistor 

AmberTools22 Case et al., 2022 http://ambermd.org/GetAmber.php  

Maestro Schrödinger, LLC https://www.schrodinger.com/products/maestro  

Miniconda Anaconda, Inc. https://docs.conda.io/en/latest/miniconda.html 

Yamllint Vergé, 2023 https://anaconda.org/conda-forge/yamllint 
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C.2 Step-by-step method details 

Here we describe the step-by-step details of how to use Resistor. These steps 

include how to 1) specify the K* positive and negative designs; 2) run OSPREY to 

compute each mutant’s positive and negative K* scores; 3) process the data to assign 

mutational probabilities and hotspot scores; and 4) assign Pareto ranks to each 

prospective mutant. As a demonstration case, we use Resistor to predict ERK2 mutants 

likely to arise in melanoma that may ablate the efficacy of the ERK1/2 inhibitor SCH7. 

C.2.1 Specifying the K* positive and negative designs   

In this step, we create the YAML files that are used to specify the input for the 

positive and negative K* designs.  Positive design refers to improving the interaction 

between a protein and its endogenous ligand, which in this context is ERK2 with ATP. 

Negative design refers to ablating the binding between a protein and its targeting 

inhibitor, here ERK2 and SCH7. By this point, we assume you have completed the steps 

in C.1, including having downloaded the PDB structure files 4qta.pdb and 2y9q.pdb, and 

the FASTA-formatted cDNA sequence file ENST00000215832.10.fasta. 

1. Prepare each of the structure files 

a. Open a terminal shell and activate the AmberTools environment 

you created in C.1): 

b. Run pdb4amber on the two ERK2 structures to add any missing 

atoms: 

 

> conda activate AmberTools22 
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Note: pdb4amber renumbers the residues in the input structures, starting from 1. We 

would like to keep our canonical residue numbering, and luckily pdb4amber outputs a 

mapping file from the original numbers to the new numbers it assigned the residues. This 

file is titled the name of the input file for pdb4amber, suffixed with _renum.txt, e.g., 

2y9q.p4a_renum.txt. Within the OSPREY distribution there’s a program called 

p4a-undo.py (found in the osprey3.3/resistor directory) which re-assigns the 

original numbering and chain identifiers. 

c. Using the same AmberTools22 conda environment, run 

p4a-undo.py with each of the two output structures from 

pdb4amber: 

d. Add hydrogens to the AMP-PNP and SCH7 structures using a 

molecular modeling program such as Maestro.  

Note: Epik235 in Maestro221 is quite good at correctly predicting p𝐾𝑎 and protonation 

states for small molecules. You will also need to compute the net charge of the small 

molecules for Step 3, which Epik and Maestro provide. SCH7’s net charge is +1, whereas 

AMP-PNP has a net charge of -4. 

e. Save the resulting protonated structures as 2y9q.h.pdb and 

4qta.h.pdb. 

> pdb4amber --add-missing-atoms -i 2y9q.pdb -o 2y9q.p4a.pdb 
> pdb4amber --add-missing-atoms -i 4qta.pdb -o 4qta.p4a.pdb 

> python p4a-undo.py 2y9q.p4a.pdb 2y9q.p4a_renum.txt > 2y9q.renum.pdb 
> python p4a-undo.py 4qta.p4a.pdb 4qta.p4a_renum.txt > 4qta.renum.pdb 
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CRITICAL: Ensure when saving these protonated structures that the resulting PDB files 

do not contain trailing whitespace (if it does, remove it using your text editor) and the 

chain identifiers have been correctly preserved. 

2. Split the structure files into their protein and ligand components 

a. Open 2y9q.h.pdb in a text editor. 

b. Extract the ATOM records corresponding to ERK2 and save them 

to a file called 2y9q.erk2.pdb. 

c. Extract the ATOM records corresponding to AMP-PNP and save 

them as a file called 2y9q.amppnp.pdb. 

d. Do the same for 4qta.h.pdb, saving the corresponding files as 

4qta.erk2.pdb and 4qta.sch7.pdb. 

3. Generate the forcefield parameters and connectivity templates for SCH7 

and AMP-PNP 

a. Activate your AmberTools environment, as in Step 1a. 

b. Use the antechamber program from AmberTools to generate 

template files (files with a .prepi extension), and parmchk2 to 

generate forcefield modification files (files with a .frcmod 

extension): 
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Note: For more information about these and other possible flags to the antechamber and 

parmchk2 programs, see section 16.1 of the Amber 22 Reference Manual, available from 

http://www.ambermd.org171. 

4. Create template coordinates for the small molecules 

a. Locate the gen-templ-coords.sh script you will use to generate the 

template coordinates (in the osprey3.3/resistor directory of 

the OSPREY distribution).  

b. Add the executable bit to the script by running the following 

command: 

c. Run gen-templ-coords.sh once for each of the ligands, using Unix 

pipe redirection to save the output. gen-templ-coords.sh expects as 

input the path of the ligand structure and the three-letter residue 

name of the ligand used in the structure: 

5. Generate rotamers for AMP-PNP and SCH7 

a. To allow the ligands to translate, rotate, and flex slightly, we 

define the flexible dihedrals for the ligands. 

chmod u+x gen-templ-coords.sh 

> antechamber -i 2y9q.amppnp.pdb -fi pdb \ 
    -o amppnp.prepi -fo prepi \ 
    -c bcc -nc -4 
> parmkch2 -i amppnp.prepi -f prepi -a Y -o amppnp.frcmod 
> antechamber -i 4qta.sch7.pdb -fi pdb \ 
    -o sch7.prepi -fo prepi \ 
    -c bcc -nc +1 
> parmkch2 -i sch7.prepi -f prepi -a Y -o sch7.frcmod 

> ./gen-templ-coords.sh 2y9q.amppnp.pdb ANP > amppnp.tc 
> ./gen-templ-coords.sh 4qta.sch7.pdb 38Z > sch7.tc 



 

170 

b. Determine the molecule-specific dihedrals using Maestro or other 

molecular visualization software. Figure 20 demonstrates 

determining the dihedrals in Maestro. 

c. Create a text file listing the dihedrals. The format of the file, and 

the rotamer specification for AMP-PNP is shown in Figure 21. 

d. Save the file as amppnp.rot. 

e. Repeat steps a-d for SCH7, saving that file as sch7.rot. 

6. Create a template YAML file for the ERK2:AMP-PNP positive K* design 

a. The OSPREY package contains a template K* affinity YAML file, 

located at osprey3.3/resistor/affinity.yaml. Make a 

copy of this file:  

b. Open the new file in your text editor and incorporate the files 

you’ve created thus far into the YAML file: 

i. Copy the contents of 2y9q.erk2.pdb as the value for the 

protein.coordinates key. 

ii. Copy the contents of 2y9q.amppnp.pdb as the value for the 

ligand.coordinates key. 

iii. Copy the contents of amppnp.tc as the value for the 

ligand.extra_template_coordinates key. 

iv. Copy the contents of amppnp.prepi as the value of the 

ligand.extra_templates key. 

> cp affinity.yaml erk2-amppnp.yaml 
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v. Copy the contents of amppnp.rot as the value of the 

ligand.extra_rotamers key. 

Optional: You can use a YAML syntax validator, such as yamllint236 to verify you have 

input syntactically valid YAML. 

c. To verify that you have created the YAML file correctly, run 

OSPREY to verify the design file: 

The output of the command should look like: 

See Problem/Potential Solution 2 (C.5.2) if your output is different, 

and Problem/Potential Solution 4 (C.5.4) if the command output 

says it can't parse the YAML file. 

7. Create a template YAML file for the ERK2:SCH7 negative K* design 

a. As in Step 6a, copy the template K* affinity YAML file: 

b. Open erk2-sch7.yaml in your text editor and incorporate the 

following files into the negative design specification: 

i. Copy the contents of 4qta.erk2.pdb as the value for the 

protein.coordinates key. 

ii. Copy the contents of 4qta.sch7.pdb as the value for the 

ligand.coordinates key. 

iii. Copy the contents of sch7.tc as the value for the 

ligand.extra_template_coordinates key. 

> osprey affinity --design erk2-amppnp.yaml --verify-design 

WARNING: Using incubator modules: jdk.incubator.foreign 
Design file validated. 

> cp affinity.yaml erk2-sch7.yaml 
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iv. Copy the contents of sch7.prepi as the value for the 

ligand.extra_templates key. 

v. Copy the contents of sch7.rot as the value for the 

ligand.extra_rotamers key. 

c. To ensure that your YAML file is in the correct format for 

OSPREY, use the affinity command's --verify-design flag to 

check the design file. The output of the command should look like: 

See Movie S7 from Guerin et al.31 for a demonstration of how to 

do this step and see Problem/Potential Solution 2 (C.5.2) if your 

output is different. 

8. Choose residues to mutate and create mutational scan designs 

a. Taking the files you created in Steps 6 and 7, add a YAML list of 

objects representing these mutants as the value of the 

scan.residues key, as is shown in Figure 22.  

 

Note: For this example, we have chosen to investigate residues Y36, A52, I56, R67, E71, 

Q105, D106, L107, M108, D111, K114, L156, and C166. 

b. In each of the files generated in Steps 6 and 7, set the ligand as 

flexible by adding it to the ligand.residue_configurations 

key in the YAML file. Figure 23 shows how this is set in the 

erk2-amppnp.yaml and erk2-sch7.yaml files. 

WARNING: Using incubator modules: jdk.incubator.foreign 
Design file validated. 
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c. After adding these fields, again verify the syntax of the design files 

is correct: 

9. Generate the K* affinity designs for each of the point mutants 

a. Using the files you modified in Step 8, use OSPREY to generate 

the positive and negative designs for each of the mutants: 

Note: The --do-scan flag instructs OSPREY to generate a K* affinity design centered 

on each of the residues specified in the scan.residues key. These K* affinity designs 

each include a single mutable residue, which is set to mutate to all the other amino acids, 

and a flexible shell around the mutating residue. The optional –scan-flex-distance 

parameter denotes the radius of the OSPREY-generated flexible shell centered on the 

design's mutable residue. It defaults to 2 Å. 

b. Verify that a positive and negative YAML design specification is 

created for each of the 13 residues of interest set in Step 8a.  The 

naming format of these files is {original-name}.{residue}.yaml, 

e.g., erk2-sch7.A36.yaml. There should be a total of 26 newly 

created files. 

  

> osprey affinity --design erk2-sch7.yaml --verify-design 
> osprey affinity --design erk2-amppnp.yaml --verify-design 

> osprey affinity --design erk2-sch7.yaml \ 
    --do-scan --scan-flex-distance 2.2 
> osprey affinity --design erk2-amppnp.yaml \ 
    --do-scan --scan-flex-distance 2.2 
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Figure 20: Demonstration of using Maestro to compute the H62-N6-C6-C5 and C2′-C1′-N9-C4 

dihedral angles for the extra rotamers definition of AMP-PNP. The red lines and numbers show the 

dihedrals and the computed angles. In Figure 3, these dihedrals are included in the rotamer definition for 

AMP-PNP. The values -3.8 and 106.9 are rounded to their nearest whole value, -4 and 107, respectively. 

 

 

Figure 21: Definition of a rotamer for AMP-PNP. We specify 10 dihedrals. These dihedrals allow K* in 

OSPREY to minimize continuously in a voxel around the dihedrals to search for low-energy conformations. 

This rotamer is defined by its atom names from the PDB file, 2y9q. Lines that begin with an exclamation 

point (!) are comments. The comments here explain the structure of the file. 
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Figure 22: Specification of the residues to scan. The value for the key is a list of objects representing 

residues in the structure.  Each object has a chain key denoting the chain identifier in the structure, a 

res_num key denoting the residue number, and the aa_type key with the 3-letter amino acid code. In 

the example above, we specify that Y26 and A52 in chain A of the structure should be included in the scan.  

Below the ellipsis we would also include objects for I56, R67, E71, Q105, D106, L107, M108, D111, 

K114, L156, and C166. 

 

 

ligand: 
  residue_configurations: 
  - mutability: [ ] 
    flexibility: 
      is_flexible: true 
      include_structure_rotamer: true 
      use_continuous: true 
    identity: 
      chain: B 
      res_num: 441 
      aa_type: 38Z 

ligand: 
  residue_configurations: 
  - mutability: [ ] 
    flexibility: 
      is_flexible: true 
      include_structure_rotamer: true 
      use_continuous: true 
    identity: 
      chain: B 
      res_num: 1359 
      aa_type: ANP 

Figure 23: Demonstration of how to specify that the ligand should be flexible in both the positive and 

negative designs. Left: residue 38Z on chain B at position 411 (which is SCH7) is set to be continuously 

flexible. Right: residue ANP on chain B at position 1359 (which is AMP-PNP) is set to be continuously 

flexible. 

 

  

scan: 
  residues: 
  - identity: 
      chain: A 
      res_num: 36 
      aa_type: TYR 
  - identity: 
      chain: A 
      res_num: 52 
      aa_type: ALA 
  - 
    ... 
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C.2.2 Running the K* predictions 

The purpose of this step is to run the positive and negative K* mutant predictions 

with OSPREY. The range in expected time on this step is dependent on how many 

sequences you're predicting, the number of flexible residues you've configured in your 

conformation space, and the capabilities of your computer(s). For additional background 

information on the interpretation of K* values and how they are used in predicting 

resistance mutations, see the Results and STAR Methods sections of Guerin et al30. 

10. Run the positive and negative K* designs 

a. Set the amount of memory to dedicate to the OSPREY process by 

exporting the JAVA_OPTS environment variable. Set this as high as 

you can, given the hardware you’re running the design on. Here's 

how it could be set on a machine with 760GiB of RAM (while 

leaving some RAM for the operating system and other processes): 

b. Execute the affinity command in OSPREY on each of the 

individual mutant design files that you generated in Step 9: 

where {design-file} is the path to one of the design files you 

generated in Step 9, and {frcmod-file} is the path to the ligand-

specific forcefield modification file you generated in Step 3b, e.g.: 

Note: There are optional flags you can pass to the affinity command that could be helpful 

for your predictions. These flags include --save-confs, --ensemble-dir, 

> osprey affinity --design {design-file} --frcmod {frcmod-file} 

> osprey affinity --design erk2-sch7.A36.yaml --frcmod sch7.frcmod 

> export JAVA_OPTS="-Xmx720G -Xms720G" 
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and --cuda. --save-confs takes an integer argument and denotes the number of low-

energy conformations from the K* molecular ensemble that OSPREY should save of 

each sequence. It defaults to not outputting structures; if you want structures add this 

argument and specify a number greater than 0. --ensemble-dir takes a path as an 

argument and indicates where structures should be saved. And if you have access to 

CUDA-enabled Nvidia GPUs, you may find that the --cuda flag substantially decreases 

the amount of time needed to run your designs. 

c. Execute the following command to print the per-residue type K* 

predictions to the terminal screen. If you also want to save the 

output (both standard out and standard error) to files, you can use 

Unix pipes to pipe the output to the tee program: 

Note: There is an optional parameter, --epsilon, which takes a double value as an 

argument and defaults to 0.683 (see the Supplemental Information of Ojewole et al. for 

justification for this default)38. 

 

Note: --epsilon must be between 0 and 1; values closer to 0 indicate a more accurate 

partition calculation and are thus more computationally expensive, and vice-versa. We 

recommend initially running K* affinity designs with an epsilon close to 1, such as 

0.9999, and then gradually decreasing epsilon to obtain increasingly accurate K* scores 

while still in a reasonable amount of time.    

> osprey affinity --design erk2-sch7.A36.yaml \ 
    --frcmod sch7.frcmod > >(tee -a sch7.A36.stdout) \ 
    2> >(tee -a sch7.A36.stderr >&2) 
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C.2.3 Assign Pareto ranks 

The purpose of this step is to compile and annotate the positive and negative K* 

mutant predictions with mutational signature probabilities and hotspot scores. In addition, 

we run the resistor program to compute the cutoff, c, from the K* predictions, and filter 

mutants that K* predicts not to be resistance mutants, or whose mutational probability is 

0, and assign Pareto ranks. 

Note: Your positive and negative K* predictions from Step 10 should be complete prior 

to beginning this step. 

11. Compile the K* predictions 

d. Copy the template CSV file included in the OSPREY distribution 

(osprey3.3/resistor/resistor.csv) to erk2-resistor.csv. 

e. Using the output files from the predictions in Step 10, which 

contain the log10 K* scores for each of the sequences you 

evaluated at a particular residue location, fill out the following 

columns:  

i. wild-type residue should have the 3-letter amino acid code 

for the wild-type residue at residue number.  

ii. residue number should have the residue number of the 

residue. 

iii. mutant residue should have the 3-letter amino acid code for 

the mutant residue Resistor is evaluating. 
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iv. wild-type K* (positive) should have the log10 K* score 

computed on the ERK2:AMP-PNP structure for residue 

number. 

v. mutant K* (positive) should have the log10 K* score 

computed on the ERK2:AMP-PNP structure for residue 

number when mutant residue is substituted for wild-type 

residue. 

vi. wild-type K* (negative) should have the wild-type K* 

(negative) should have the log10 K* score computed on the 

ERK2:SCH7 structure for residue number.  

vii. mutant K* (positive) should have the log10 K* score 

computed on the ERK2:SCH772894 structure for residue 

number when mutant residue is substituted for wild-type 

residue. 

f. Complete a new row for each mutant sequence you evaluated in 

Step 10.  Each positive/negative design pair from Step 10 

evaluated 21 different residue types in each location, meaning we 

must complete 21 rows for each residue. See Table 16 for an 

example of a partially completed worksheet. 

12. Run the resistor program to assign mutational signature probabilities, filter 

predicted benign mutations, and assign Pareto ranks. 

g. Open a terminal and change into the osprey3-3/resistor 

directory. 
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h. Download the required Julia dependencies: 

i. Start the Julia interpreter with the following command: 

 

ii. Activate Julia's package manager by hitting the ']' key. 

iii. Type instantiate and wait while the package manager 

downloads the dependencies. 

iv. Exist the interpreter by entering CTRL-d or typing exit() 

and hitting enter.  

i. Run the program to assign the mutational probabilities and cDNA 

codons to each mutant sequence: 

where {mut-prob-file} is the path to the mutational probabilities 

file, {fasta-file} is the path to the cDNA file, {id} is the identifier of 

the sequence in {fasta-file}, {csv-file} is the path to the CSV file 

you created in Step 11, and {pareto-config} is the path to the 

default Pareto optimization configuration JSON, e.g.: 

This command: 

i. Fills out the signature probability and codon columns 

> julia --project=. 

> julia --project=. main.jl --mut-prob {mut-prob-file} \ 
    --fasta {fasta-file} --identifier {id} \ 
    --csv-file {csv-file} --pareto-config {pareto-config} 

> julia --project=. main.jl \ 
    --mut-prob osprey3-3/resistor/mutational-signatures/melanoma.json \ 
    --fasta ./mapk1-cdna.fasta --identifier MAPK1 \ 
    --csv-file erk2-resistor.csv \ 
    --pareto-config osprey3-3/resistor/pareto-config.json 
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ii. Filters rows whose mutant K* (positive) is less than 0, as 

this indicates the loss of function with the endogenous 

ligand28. 

iii. Filters rows whose signature probability is 0, (indicating 

that the mutant can only occur with 3 base changes). 

iv. Computes the cut-off c, as defined in Equation 4 in Guerin 

et al30. 

v. Filters mutants whose ratio of positive to negative K* 

scores are below the cut-off. 

vi. Fills out the hotspot count column by counting how many 

resistance mutations remain at each position after the 

filtering in the prior steps. 

vii. Fills out the rank column by running Pareto optimization 

over the mutant K* (positive), mutant K* (negative), 

signature probability, and hotspot count columns. 

It outputs the completed table to standard out. You can redirect it 

to a file using I/O redirection in Linux or by piping the output to 

the tee command. Table 17 provides an example of the output file. 

 

Note: The Pareto JSON specification file is described in the README.md. By default, 

Resistor optimizes over mutational signature probability, the positive and negative K* 

scores, and the hotspot score. We've provided a template Pareto JSON specification file 

in the resistor directory, pareto-config.json, which specifies to optimize by 
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maximizing a mutant's signature probability, positive design K* score, and hotspot score, 

and minimizing the mutant's negative design K* score. If you had other criteria to 

optimize over you could add these to this Pareto JSON specification file. 

 

Note: There are two additional optional flags to the command above that may be helpful 

in some circumstances. These flags are --debug and --c0. The --debug flag prints out 

intermediary CSV files after each filtering and computational step. It also prints the 

computed cut-off c to standard error. The --c0 flag allows you specify a different value 

for 𝑐0, for more information as to what this value is see Guerin et al30. 
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Table 16: A partially completed worksheet for Pareto optimization. The log10 K* scores for the positive 

designs (ERK2:AMP-PNP) and negative designs (ERK2:SCH7) are put in columns D-G. Put the K* score, 

for the wild-type sequence, e.g., Q105, bound to the endogenous ligand in column D, and the mutant 

sequence, e.g., Q105A, bound to the endogenous ligand in column E. In columns F and G do the same for 

ERK2 bound to SCH7. 

 A B C D E F G 

1 wild-type 
residue 

residue 
number 

mutant 
residue 

wild-type K* 
(positive) 

mutant K* 
(positive) 

wild-type K* 
(negative) 

mutant K* 
(positive) 

2 gln 105 ALA 47.502 47.293 50.787 50.493 
3 gln 105 ARG 47.502 51.098 50.787 28.284 
4 gln 105 ASN 47.502 47.371 50.787 50.582 
5 gln 105 ASP 47.502 45.601 50.787 50.798 
6 gln 105 CYS 47.502 47.413 50.787 50.528 
7 gln 105 GLU 47.502 45.497 50.787 49.651 
8 gln 105 GLY 47.502 47.079 50.787 50.173 

 

Table 17: The Pareto optimization output file format. Columns H-K are now filled out. Column H 

contains the computed signature probability, column I the corresponding codon from the cDNA FASTA file, 

column J the hotspot count, and column K the computed Pareto rank. The log10 K* scores for the positive 

designs (ERK2:AMP-PNP) and negative designs (ERK2:SCH7) are included in columns D-G but are omitted 

above due to space constraints. 

 A B C H I J K 

1 wild-type 
residue 

residue 
number 

mutant 
residue 

signature 
probability 

codon hotspot 
count 

rank 

2 gln 105 ARG 1.65E-03 ACAGG 3 1 
3 gln 105 LYS 1.02E-03 ACAGG 3 3 
4 gln 105 TRP 7.48E-06 ACAGG 3 4 
5 asp 106 HIP 1.20E-03 GGACC 2 4 
6 asp 106 LYS 5.02E-04 GGACC 2 5 
7 met 108 ILE 5.98E-02 CATGG 3 2 
8 met 108 TRP 1.64E-06 CATGG 3 2 
9 met 108 VAL 1.74E-03 CATGG 3 3 
10 asp 111 LEU 1.53E-06 AGATC 3 4 
11 asp 111 PHE 2.95E-06 AGATC 3 4 
12 asp 111 TYR 2.33E-03 AGATC 3 3 

 

C.3 Expected outcomes 

Resistor provides a protocol for ranking potential resistance mutations to existing 

and prospective therapeutics. In an earlier publication30, we used Resistor to successfully 

predict resistance mutations in BRAF and EGFR. In this example, we have applied 

Resistor to predicting resistance mutations to SCH7, an ERK1/2 inhibitor. 
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As an outcome, the predicted resistance mutations, as well as their Pareto ranks, 

are contained in the file output in Step 12. With that file, one can analyze the predicted 

change in a mutant's positive K* score and negative K* score, meaning that Resistor 

produces not only binary predictions of a mutant's resistance or sensitivity profile but also 

whether a mutation is resistant because of increased binding to the endogenous ligand, 

decreased binding to the therapeutic, or a combination of the two factors. It also uses a 

specific cancer type's mutational signature to predict how likely it is that a putative 

resistance mutation will occur in a specific cancer patient population. Additionally, as 

mentioned in Step 10, Resistor's use of OSPREY's K* algorithm allows us to output 

molecular ensembles of low energy conformations for structural analysis. See Figure 24 

for an example of the OSPREY-generated low-energy structural ensemble. 



 

185 

 

Figure 24: OSPREY-generated structural ensembles of ERK2 E71K. (top) ERK2 E71K with SCH7. R70 

and 71K are labeled, and SCH7 is in green.  (bottom) ERK2 E71K with AMP-PNP. R70 and 71K are labeled, 

and AMP-PNP is green and purple. According to Brenan et al.237, the E71K mutation grants ERK2 resistance 

to SCH7. Resistor correctly predicts this resistance mutation and ranks it in top Pareto rank. 

C.4 Limitations 

In the example we provided above for ERK2 and SCH7, we investigated only 

potential resistance mutations occurring within the binding pocket of the ligands. 

Modeling allosteric pathways to resistance, for example mutations distant from the 
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binding pocket on the opposite side of ERK2 causing large-scale conformational 

rearrangement, while a goal of OSPREY, is not something we've yet incorporated into 

Resistor. Additionally, Resistor does not model resistance caused by phenomena such as 

splice variants, amplification, or mutations in related genes, which have been shown to be 

important in N-RAS, MEK1, MEK2, and other genes123. Additional modeling to 

incorporate these causes of resistance is left to future work. 

C.5 Troubleshooting 

C.5.1 Problem/Potential Solution 1 

Problem: You do not see help text when you run the osprey 

affinity --help command. 

Potential Solution: There are different potential causes for this problem. If 

instead of help text you see the following printed out: 

then you have not correctly installed and configured Java 17 as detailed in Before You 

Begin, Step 1. Redo this step and try again. If the message is: 

then it is possible that you are using a version of java that is newer than Java 17. At the 

current time only Java 17 is supported. It is often the case that there are multiple versions 

of Java installed in an operating system, and the default version in your operating system 

> osprey affinity --help 
 
ERROR: JAVA_HOME is not set and no 'java' command could be found in 
your PATH. 
 
Please set the JAVA_HOME variable in your environment to match the 
location of your Java installation. 

> osprey affinity --help 
Error occurred during initialization of boot layer 
java.lang.module.FindException: Module jdk.incubator.foreign not 
found 



 

187 

may not be Java 17. You can confirm that you are running the correct version of Java for 

OSPREY by running the command: 

Below is a demonstration of the output of that command showing the incorrect version of 

Java: 

The remedy in this case is to ensure that you have downloaded and configured Java 17, as 

detailed in Before You Begin (C.1.2). 

C.5.2 Problem/Potential Solution 2 

Problem: When using the --verify-design option to the affinity command, 

you see output indicating that indicates a residue was deleted for not having a matching 

template. 

Potential Solution: Note which residue the command says it deleted. The output 

tells you the atoms that it expects to find. Open the YAML file look at that corresponding 

residue in either the protein or ligand coordinates.  Identify the missing atoms and add 

them into the structure using a molecular visualization program such as Maestro. If just 

the labeling is off, fix the labeling. See Movie S8 from Guerin et al.31 for a demonstration 

of how to do this. 

C.5.3 Problem/Potential Solution 3 

Problem: When using the --verify-design option to the affinity command, 

you see output indicating that the residue does not exist. 

$JAVA_HOME/bin/java -version 

> $JAVA_HOME/bin/java -version 
openjdk version "19" 2022-09-20 
OpenJDK Runtime Environment (build 19+36-2238) 
OpenJDK 64-Bit Server VM (build 19+36-2238, mixed mode, sharing) 
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Potential Solution: Look at the coordinates section of the YAML file for the 

residue mentioned in the error message. Ensure the residue's number and amino acid 

identifier matches that used in the scan. See Movie S9 from Guerin et al.31 for a 

demonstration of this issue and resolution steps. 

C.5.4 Problem/Potential Solution 4 

Problem: OSPREY fails to parse the design file YAML specification.  

Potential Solution: Use a YAML validator, such as yamllint, which can indicate 

on which line the YAML syntax is broken. Assuming you have installed yamllint as 

described in Step 3 of Installing the Software Dependencies, default invocation of 

yamllint would look as follows: 

Any errors will be identified with a description of the problem and the line 

number. Address them as appropriate. Additionally, the official YAML specification238 is 

a good resource for learning how YAML documents are written and parsed. 

C.5.5 Problem/Potential Solution 5 

Problem: The osprey affinity command begins to run but after some time fails to 

complete with an error. 

Potential Solution: The most common reason osprey affinity fails is that the 

design has run out of memory. The error output might look like this: 

> yamllint {design-file} 
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The important thing to remember is that error stack traces are read from the bottom to the 

top.  Scroll to the bottom of the error and if you see a message that looks like: 

The affinity command failed because it ran out of memory. There are two potential 

solutions to try. The first is to increase the amount of memory allocated to OSPREY, if 

possible. This is defined in the JAVA_OPTS environment variable, e.g., to allocate 720 

gigabytes to the Java heap, use: 

For designs where you run out of memory, the first attempt should be to try to make more 

memory available to OSPREY. If that is not possible, then the second potential solution 

is to reduce the number of flexible residues in your design. Oftentimes removing one or 

two flexible residues will allow a previously difficult design to finish. This should only 

be done when absolutely necessary, as removing flexible residue can reduce the accuracy 

of the predictions. 

edu.duke.cs.osprey.parallelism.TaskExecutor$TaskException: A task 
failed, no new tasks can be submitted  
at 
edu.duke.cs.osprey.parallelism.ConcurrentTaskExecutor.recordException
(ConcurrentTaskExecutor.java:106) 
... 

Caused by: java.lang.OutOfMemoryError: Map failed 
  at java.base/sun.nio.ch.FileChannelImpl.map0(Native Method) 
  at 
java.base/sun.nio.ch.FileChannelImpl.mapInternal(FileChannelImpl.java
:1100) 
  ... 18 more 

export JAVA_OPTS="-Xmx720G -Xms720G" 
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